Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия изобарические

    Рис. 2. показывает, что система, находящаяся при начальном давлении р и расширяющаяся от объема 1 до объема Ог, совершает различную работу в зависимости от наложенных условий. Изобарическое расширение газа дает наибольшую работу. Постоянство давления в этом случае поддерживается за счет постепенного повышения температуры расширяющегося газа. Работа изотермического расширения больше работы адиабатического расширения. Это объясняется тем, что в первом случае состояние газа изме- [c.19]


    Уравнение, описывающее изменение коэффициентов активности компонентов бинарного раствора с составом в условиях изобарического парожидкостного равновесия имеет вид  [c.114]

    Наконец, в табл. 4 помещены аналогичные расчетные данные для системы ацетон—вода, которая в изобарических условиях имеет интервал температур кипения свыше 30° С. [c.39]

    По аналогии можно составить функцию, представляющую минимум. В гл. 9 было указано, что в неизолированной изотермической и изобарической системе, находящейся в состоянии равновесия, свободная энтальпия системы минимальна (рис. 15-3, а). В приведенном на рис. 15-3, 6 экономическом примере представлен минимум функции себестоимости Р8(У). Технологические условия в приведенном элементе процесса не изменяются, целевая функция в этом случае — себестоимость  [c.319]

    Этот факт означает, что экспериментальные данные, полученные при какой-то одной температуре, могут быть использованы для вычисления коэффициентов активности при другой температуре, не слишком отличающейся от первой. Указанное обстоятельство особенно выгодно для расчета процесса ректификации, протекающего в изобарических условиях с изменением температуры от тарелки к тарелке. [c.37]

    Вильсона должно удовлетворять уравнению Гиббса — Дюгема для изотермических и изобарических условий (И-11). Если же температура переменна, то уравнение Вильсона удовлетворяет дифференциальному уравнению Гиббса — Дюгема для изобарических условий  [c.37]

    Параметры Aij и Ац бинарной смеси могут быть получены из данных по ее парожидкостному равновесию. Для этого требуется. в принципе только одна экспериментальная точка (х, у,Т и Р)-, иногда указанные параметры можно рассчитать на основе данных по азеотропному составу и температуре кипения. Вообще же необходимо иметь ряд экспериментальных равновесных точек в изобарических или в изотермических условиях. Методика расчета параметров по этим данным приводится в главе VI. [c.38]

    На практике нагревание (или охлаждение) веществ чаще всего осуществляют при условиях, близких к изобарическим, поэтому, как видно из выражения (3.42), для определения расхода тепла обычно приходится пользоваться значениями энтальпий. [c.92]

    В промышленных условиях испарение нли конденсацию осуществляют обычно при изобарических нли близких к ним условиях. [c.273]

Рис. 15. Химический потенциал метана в точке росы и в точке давления насыщения для изотермических и изобарических условий. Рис. 15. <a href="/info/2633">Химический потенциал</a> метана в <a href="/info/12759">точке росы</a> и в <a href="/info/55218">точке давления</a> насыщения для изотермических и изобарических условий.

    Третье правило Гиббса—Коновалова в изобарических или изотермических условиях состав обеих фаз меняется в одном направлении, что следует из уравнений (10.43) и (10.44). Действительно, при изобарическом изменении температуры величины (дХ2 /дТ)р и (dA 2Jj/d7) . имеют один и тот же знак. Аналогичный вывод следует и из рассмотрения уравнений (10.40) и (10.41) состав обеих фаз меняется в одном направлении при изотермическом изменении давления. [c.192]

    Наиболее удовлетвО рительное описание поведения бинарных систем в широком диапазоне изменения составов достигается, если имеется ряд экспериментальных равновесных точек в изобарических или изотермических условиях. [c.54]

    Уравнения (IX.119) и (IX.120) описывают влияние изменения состава одной из сосуществующих фаз на те.мпературу сосуществования при изобарических условиях. [c.231]

    Второй закон Гиббса —Коновалова устанавливает взаимосвязь между составами двух фаз, находящихся в устойчивом равновесии между собой. Он формулируется следующим образом при изотермических и изобарических условиях составы раствора и пара изменяются симбатно. Согласно (1Х.119) и (IX.120) имеем [c.232]

    Производные (1Х.129) и (1Х.130) характеризуют изменение состава одной фазы в зависимости от изменения состава сопряженной фазы при изобарических и изотермических условиях соответственно. [c.233]

    Выражение (XI.52) является дополнительным условием, снижающим вариантность системы в данной точке на единицу. Поэтому в точке максимума или минимума для изобарического сечения системы равновесие должно быть нонвариантным, и сплавы, отвечающие составу экстремальных точек на рис. 51, ведут себя как однокомпонентные системы. [c.279]

    Вышеприведенные производные характеризуют изменение состава одной фазы в зависимости от изменения состава другой при изотермических (V. 172) и изобарических (V. 173) условиях. [c.267]

    С другой стороны, согласно уравнению (VI.73), как при изобарическом, так и при изохорических условиях Кр = КхР , [c.382]

    T. e. равно изменению свободной энергии при изотермо-изобарическом смешении двух разных газов (IX.221) со знаком минус. Легко понять, что использование формулы (IX.226) дает нулевое изменение свободной энергии при изотермо-изобарическом смешении одинаковых газов, так что противоречия с условием аддитивности не возникает. [c.256]

    Настоящая работа посвящена созданию компьютерной системы управления экспериментальными исследованиями парожидкостного равновесия в изобарических условиях для сложных смесей органических веществ. [c.106]

    Для оценивания параметров бинарного взаимодействия моделей, а следовательно, и для дальнейших расчетов, могут использоваться как полные экспериментальные данные (X-Y-T-P), так и неполные данные (X-Т-Р, X-Y-P, X-Y-T), полученные в изобарических или изотермических условиях. В азеотропных смесях для оценивания параметров модели достаточно информации об азеотропной точке. [c.107]

    Приближенная теория, представленная уравнениями (У,3)— (У,6), не удовлетворяет условию об изобарической поверхности <У,2) нри больншх значениях у, так как по теории скорость изменяется с у экспоненциально, а не пропорционально 1/г/, как того требует уравнение (У,2). Приближенно форма поверхности при больших значениях у может быть вычислена исходя из допущения о постоянстве вертикальной составляющей скорости в жидкой пленке. Тогда для двухмерной системы в координатах рис. У-З имеем [c.179]

    Схема № 3. Компрессорную перекачку с предварительным охлаждением (рис. 102) применяют для дальнего транспортирования. Необходимость выбора такой схемы обусловлена тем. что несмотря на высокое давление подаваемого от источника углекислого газа обычная беском-прессорная или компрессорная перекачка здесь неприемлема, так как указанные схемы приводят к конденсации углекислого газа в трубопроводе и формированию двухфазной смеси. Согласно предлагаемой схеме, двуокись углерода вначале сжимается в компрессорах (линии 1,1 ) и переводится в новое термодинамическое состояние —в область сверхкритической температуры и давления, т. е. в область, где i>tкp и р>ркр. Затем проводят изобарическое охлаждение и конденсацию транспортируемой среды в теплообменном аппарате (линии 2,2 ) в результате чего температура двуокиси углерода становится ниже критической температуры, и сама углекислота переходит в жидкое состояние. В качестве теплообменного аппарата может быть использован либо аппарат воздушного охлаждения, либо теплообменник специальной холодильной установки. Аппарат воздушного охлаждения применим лишь в условиях, если температура окружающего воздуха не превышает 20—25 °С. Только при этом может быть обеспечен перевод охлаждаемой среды в область tособенности нашей страны, схема с аппаратами воздушного охлаждения может быть рекомендована за редким исключением в большинстве районов. [c.170]

    В статических установках реакции проводят не в изобарических, а в изохорических условиях, что нужно утатыйать при обработке [c.405]

    До сих пор мы изучали свойства бинарных смесей при постоянной температуре. Теперь перейдем к рассмотрению того, как ведут себя смеси при постоянном давлении. Именно такое условие имеет место при перегонке, протекающей обычно изобарически с тенденцией к установлению равновесия между жидкой и паровой фазами. [c.74]


    Обычно процесс ректификации проводят в изобарических условиях, поэтому рассмотрим поведение идеальной бинарной смеси при Р = onst. [c.290]

    Изучение десорбции аммиака из цеолита МдЛ, термопарообработанного при 380°С в течение 30 часов газо-паровой смесью с парциальным давлением водяных паров 40 кПа, проводили на дериватографе системы . Паулик, Д. Паулик, Л. Эрдей в изобарических условиях и воздушной среде. Для исследования выбран диапазон тешератур 150-600°С, поскольку именно в нем происходит десорбция аммиака, адсорбированного на катионах цеолитов. Одновременно дериватографическим исследованиям подвергли термопарообработаннне образцы после дополнительной обработки их дистиллированной водой (при 70°С в течение 20 часов) или трехчасового прокаливания при 550-600°С, а также цеолит МаА и активный оксид алюминия. Результаты этих исследований в виде термогравиметрических кривых, представлены на рис.З, где для большей наглядности они приведены в дифференциальной форме. Как видно из рис.За, термопаровая обработка существенно уменьшает каличество аммиака, десорбируемого из цеолита, по сравнению с исходным образцом (кривые I и 3). [c.36]

    Плотность нефтяных фракций зависит от давления. Эта зависимость выражена для дистиллятных фракций более четко, чем для остаточных. В интервале температур до 340 °С изменение давления от 0,1 до 10 МПа приводит к увеличению плотности прямогониых нефтяных остатков не более чем на 2,5 % [43]. В небольших пределах изменений давлений зависимости плотности реактивных топлив от давления носит линейный характер [44]. Влияние химического состава масел на зависимость плотности от давления изучалось на примере отдельных групп углеводородов легких масляных фракций в изотермических и изобарических условиях [45]. [c.19]

    О 16ВИДН0, при желании можно построить также изотермическую кривую равновесия у = 1(х ). Однако рассматриваемые в этом разделе графики обычно используются для анализа и расчета процессов перегонки и ректификации двухкомионентных систем, которые на практике проводятся при условиях, близких к изобарическим. Поэтому практическое значепне имеют главным образом графики, построенные для условий р = сопз1. [c.255]

    Применявшееся в 5 для расчета изобарического сечения в идеальной жидкости условие р = onst в данном случае непригодно в связи с потерями в скачках уплотнения и аа счет турбулентного трения. [c.402]

    Детонация представляет собой процесс распространений в газе, жидкости или твердом теле экзотермического химического превращения в виде узкой зоны, движущейся относительно исходного вещества со скоростью, превышающей скорость звука. Эта зона названа детонационной волной. Быстрая реакция в зоне возбуждается не вследствие передачи тепла от прореагировавшего слоя вещества к непрореагировавшему, а путем ударного сжатия и соответствующего нагревания исходной среды, вызванного давлением продуктов реакции. Поэтому детонация возможна только в таких средах, продукты реакции которых занимают больший объем, чем исходное вещество. Строгим критерием принципиальной возможности детонации в данной среде является положительный знак изобарическо-изохорическо-го теплового эффекта соответствующей реакции Qpv. Эта величина измеряется теплотой, выделяемой в условиях постоянства давления р и удельного объема V. [c.311]

    В зависимости от условий перехода системы из одного состояния в другое в термодинамике различают изотермические,изобарические, изохорические и адиабатические процессы. Первые— протекают при постоянной температуре (Г = onst), вторые — при постоянном давлении (р = onst), третьи — при постоянном объеме (V = onst), четвертые — в условиях отсутствия обмена теплотой между системой и окружающей средой (q = 0). / [c.94]

    Если поддерживать постоянным давление ръ и препятствовать отводу теплоты, то ассоциация будет происходить изобарически и изобразится на рис. 7.4 прямой ась параллельной оси абсцисс. Ко-.нечная точка сг соответствует такому повышению температуры за счет теплоты ассоциации, при котором равновесное давление рв становится равным начальному, а А0=0. Во всех промежуточных случаях, где не сохраняются условия либо изотермичности, либо изобаричности, переход системы из начальных условий к равно весным будет описываться более сложной кривой (например,асз) Таким образом, все точки области I соответствуют условиям су ществования неустойчивого вещества А (например, оксида) и ус тойчивого вещества АВ (соответственно карбоната или оксида) В области И соб[людается обратное соотношение р в<рв. По этому вещество АВ, помещенное в эти условия, неустойчиво и в системе возможна реакция диссоциации, течение которой сопровождается, согласно уравнению изотермы Вант-Гоффа, понижением энергии Гиббса (АО). [c.198]

    Производная дхт/ёр)ех характеризует влияние Т или р на состав системы, имеющий экстремумы р и Т. Выражения (V. 192) и (V. 193) являются общетермодинамическими и приложимы к двойным системам любого типа, имеющим экстремумы р и Т. Чтобы вскрыть физический смысл знаменателя в уравнениях (V. 192) и (V. 193) рассмотрим рис. V. 9, в и V. 10, в, на которых изображены все возможные варианты расположения кривых зависимости состава пара от состава жидкости для систем с экстремумами Тир. Тангенс угла наклона касательной к этим кривым для изобарических и изотермических условий определяется производными /дх р или Д<Зл (2)/(Зл (П] Если учесть выражения (V. 172) и (V. 173), то [c.275]

    Зная состав выделяющегося пара, можно вычислить дистилляционную линию. Для этого необходимо уравнение дистилляционной линии, полученное в предположении, что процесс идет очень медленно и состояние равновесия между фазами практически не нарушается. Процесс открытого испарения не может протекать изотермо-изобарически, так как в ходе его изменяются концентрации всех трех компонентов, две из которых меняются независимо, на что расходуются две степени свободы. Следовательно, произвольно задать постоянными и Т, и р одновременно невозможно. Обычно рассматривают дистил-ляционные линии при закрепленном давлении, что соответствует обычным условиям проведения перегонки. Если из Ф > + моль 1-й фазы, состав которой характеризуется мол. долями х[, л , x , образовались моль 1-й фазы, но с новым составом и моль 2-й фазы состава [c.323]

    Уравнение (XIII. 40) служит также для анализа реакций в растворах. Они протекают при изотермо-изобарических условиях. Когда концентрации веществ малы, плотность почти не меняется. Свойства раствора близки к свойствам идеального. Определим характеристическую функцию  [c.744]

    Релеевский триплет. Итак, спектр тонкой структуры релеевского рассеяния света (релеевский триплет) в чистых жидкостях обусловлен адиабатическими и изобарическими флуктуациями плотности. В растворах центральная компонента релеевского триплета, будем называть ее компонентой Гросса (по имени открывшего ее в 1930 г. Е. Ф. Гросса), зависит не только от изобарических флуктуаций плотности, но и от флуктуаций концентрации. Изучая спектр центральной компоненты релеевского триплета, изображенного на рис. 32, можно определить коэффициент те.мпературопроводности х и, если известно Ср, —коэффициент теплопроводности %. Изучая спектр компонент Мандельштама—Бриллюэна, получают сведения о скорости распространения и коэффициенте поглощения звуковых волн [36]. Точность этих измерений резко возросла с появлением газовых лазеров. Измерения проводятся при углах рассеяния 0, обычно превышающих 20—30°. В этих условиях спектр компонент Мандельштама — Бриллюэна позволяет изучать лишь гиперзвуковые волны, имеющие частоту порядка 10 Гц. При очень малых углах рассеяния в принципе можно было бы исследовать скорость и поглощение звука в более широком диапазоне частот и оптическим методом получать сведения о дисперсии скорости звука, т. е. о зависимости скорости звука от частоты колебаний звуковых волн [37]. [c.144]

    ДИАГРАММА КИПЕНИЯ t—x и КРИВАЯ РАВНОВЕСИЯ у —ж До сих пор мы рассматривали свойства двойных смесей при постоянной температуре теперь следует перейти к изучению поведения смесей при постоянном давлении. Такие условия имеют место при ректификации, протекающей обычно изобарически со стремлением к установлению равновеспя между жидкой и паровой фазами. [c.79]


Смотреть страницы где упоминается термин Условия изобарические: [c.194]    [c.101]    [c.24]    [c.24]    [c.80]    [c.63]    [c.233]    [c.240]    [c.86]    [c.266]    [c.402]   
Фазовые равновесия в химической технологии (1989) -- [ c.512 ]




ПОИСК







© 2025 chem21.info Реклама на сайте