Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Облучение сухих нуклеиновых кислот

    Облучение сухих нуклеиновых кислот [c.280]

    В последнее время появилось несколько работ, связанных с изучением явлений хемилюминесценции в облученных белках, нуклеиновых кислотах и синтетических полимерах. Было обнаружено [301, 302] явление свечения сухих облученных синтетических полимеров и биополимеров. Оказалось, что некоторые кинетические характеристики свечения и уменьшения концентрации радикалов, измеренные методом ЭПР, совпадают. На рис. 117 приведены кинетические кривые свечения (сплошная линия) и изменения концентрации радикалов (точки) в облученном сывороточном альбумине при 65° С на воздухе. На рис. 118 показана температурная зависимость интенсивности свечения и скорости гибели радикалов в аррениусовских координатах. Из рисунков видно, что энергия активации временной ход свечения и концентрации радикалов совпадают в пределах ошибок опытов. [c.236]


    Структурные повреждения, выявляемые в облученных нуклеиновых кислотах. При облучении сухих препаратов ДНК возникает ряд структурных повреждений, которые удается количественно оценить, как правило, при использовании высоких доз излучения, порядка 10 Гр. Это значительно превосходит значение дозы >37 для различных типов инактивации. Не исключено, что в действительности инактивация нуклеиновых кислот возникает в результате единичных повреждений, например вследствие разрушения нескольких нуклеотидов. Однако ни одним из современных методов анализа не удается обнаружить столь незначительные повреждения среди десятков тысяч нуклеотидов, составляющих полинуклеотидную последовательность ДНК или РНК. [c.78]

    На рис. IV-1 сопоставлена радиочувствительность рибонуклеазы в сухих препаратах и водном растворе. Как следует из данных эксперимента, значение дозы / 37 для инактивации сухого фермента 420 кГр, в водном растворе сравнимая инактивация достигается после облучения в дозе 4 кГр. Такой результат характерен для различных макромолекул — белков, нуклеиновых кислот и др. в разбавленном водном растворе их радиочувствительность возрастает в десятки и сотни раз. [c.96]

    Глегг и Кертец [21] нашли, что как целлюлоза, так и пектин (см. ниже) после -облучения проявляют последействие. Образцы сушили в вакууме над пятиокисью фосфора и облучали в заполненных воздухом сосудах дозами 0,1—2 мегафэр. Сразу по окончании облучения и с определенными интервалами в течение 29 дней после этого замеряли характеристическую вязкость растворов. Наблюдалось определенное снижение вязкости, причем оно было больше у целлюлозы и достигало 106% от первичного эффекта. Последействие отмечалось только у наиболее тщательно высушенных образцов. Небольшого количества влаги было достаточно, чтобы предотвратить этот эффект. Наблюдалось подобное же последействие при инактивации белков и деструкции нуклеиновых кислот в растворе. Оно будет обсуждено ниже в разделах на стр. 219 и 245, но приведенные эксперименты являются, по-видимому, первыми, показавшими последействие для полисахаридов и вообще полимеров в сухом состоянии. [c.211]

    В связи со значительным интересом, проявляемым в радиобиологии к нуклеопротеидам и нуклеиновым кислотам, большинство радиационно-химических исследований этих веществ было выполнено в водных растворах. С сухими же полимерами были проведены единичные работы. Флюк, Дрю и Поллард [122] подвергали бомбардировке дейтонамп и электронами трансформирующий фактор пневмококков. Подвергавшийся облучению продукт был исследован в отношении способности трансформировать шероховатый штамм пневмококка КЗбА в гладкий З-тип. Найдено, что одного попадания в мишень молекулярного веса 6-10 достаточно, чтобы лишить дезоксирибонуклеиновую кислоту трансформирующей способности. Это соответствует молекулярному весу нативной дезоксирибонуклеиновой кислоты в пределах экспериментальной ошибки метода и показывает, что для передачи необходимой генетической информации требуется целая молекула этой кислоты. Очевидно, здесь не происходит воспроизведения генетической информации по длине [c.252]


    Эффекты, вызываемые облучением нуклеиновых кислот в сухом или слегка влажном состоянии, весьма сходны с эффектами, вызываемыми облучением в водном растворе, несмотря на различный механизм. Разрываются фосфорноэфирные связи [L49], что приводит к уменьшению молекулярного веса, которое можно проследить по измерениям вязкости [К43, L49], измерению константы седиментации [К43, S62] и светорассеянию [А19]. Вследствие двойной спиральной структуры ДНК молекулярный вес может уменьшаться только тогда, когда два разрыва происходят почти один напротив другого. На разрыв водородной связи при облучении указывает тот факт, что для водного раствора облученного материала оптическая плотность вблизи 260 ммк выше, чем для необлученного [548]. При растворении облученной нуклеиновой кислоты в разбавленном соляном растворе она образует гель, а не прозрачный раствор [548] это показывает, что имевшаяся исходная структура утрачена, но существует тенденция к агрегированию путем образования новых водородных связей. В опытах с ультрацентрифугированием также отмечалась агрегация [562]. [c.280]

    Химическая характеристика высокомолекулярных соединений путем исследования продуктов деструкции основывается на особенностях строения полимеров. В некоторых случаях продукты распада определенного строения получаются уже при сухой перегонке, для многих полимеров деструкция протекает вплоть до образования мономеров. При облучении ультрафиолетовыми лучами и при размоле в шаровой мельнице также происходит деструкция полимеров, но большей частью только до низкомолекулярных полимеров (например, при размоле полистирола в шаровой мельнице происходит деструкция до степени полимеризации около 100). Направленная деструкция, сопровождающаяся разрывом определенных связей в макромолекуле, позволяет сделать конкретные выводы о строении полимера. Такая реакция имеет место при расщеплении озонидов каучука (см. стр. 81), а также при гидролитическом расщеплении полисахаридов (см. стр. 86, 87 и 91) и идентификации осколков макромолекул известными методами, используемыми для низкомолекулярных соединений. Исследования продуктов распада белков и нуклеиновых кислот также дали возможность сделать предварительные выводы о их строении и о строении структурных единиц (об анализе аминокислот см. стр. 97). О специфических методах ферментативного расщепления было уже упомянуто выше (см. стр. 92). Для установления строения поливинилового спирта, полученного из поливинилацетата, наряду с отсутствием янтарной кислоты в продуктах разложения (как показали Штаудингер и Штарк, см. стр. 107) решающим явился тот факт, что этот полимер не деструктируется или очень незначительно деструктируется такими реагентами, как йодная кислота, расщепляющая 1,2-гликоли (Мар-вел и Деноон). [c.182]

    Изменение содержания суммы нуклеиновых кислот (РНК + ДНК) в меристематических тканях картофеля и лука под действием гамма-облучения (В V фосфора на 1 г сухого вещрства) [c.189]

    Механизм возникновения структурных повреждений ДНК в результате поглощения энергии ионизирующего излучения выяснен недостаточно. Работы в этом. направлении интенсивно проводятся в настоящее время. Большо число исследований посвящено анализу начальной стадии химических -из менений в облученных нуклеиновых кислотах, для которой характерно лоявление -свободных радикалов. Методом ЭПР-апектроскопии. изучают выход и структуру радикалов, возникающих при облучении свободных азотистых оснований, нуклеозидов ш нуклеотидов. Сопоставление этих спектров с наблюдаемыми при облучении сухой ДНК позволяет в ряде случаев идентифицировать радикалы, определяющие спектр облученных нуклеиновых ислот. Один из компонентов сигнала ЭПР облученной ДНК — радикал тимина, образованный, по мнению ряда авторов, продуктом присоединения атомарного водорода к Сб-атомам тимина. Аналогичной эффект можно продемонстрировать при действии на порошкообразный образец атомарным водородом, полученным при газовом разряде  [c.80]

    Материал этой главы посвящен рассмотрению биофизических подходов к анализу механизмов инактивации биомакромолекул ионизирующей радиацией. В общем ряду радиобиологических проблем этот вопрос имеет первостепенное значение лучевое поражение любой биологической системы, от вируса до многоклеточного организма, начинается с инактивации небольшого числа молекул, составляющих биологичеомий субстрат. В то же время облученные сухие гомогенные препараты ферментов или нуклеиновых кислот I— идеальная система для биофизического анализа. В живой клетке на первичные радиационные повреждения макромолекул накладываются эффекты, гораздо более сложные и пока еще не определенные расширение поражения за счет метаболических реакций, восстановление пораженной молекулы за счет функционирования репарирующих систем, эффекты, связанные с гетерогенностью облучаемой системы, присутствием воды и низкомолекулярных субстратов и т. д. Следовательно, изу- [c.94]


    Изучение инактивирующего действия ионизирующей радиации на макромолекулах представляет еще самостоятельный интерес как метод анализа функциональных свойств отдельных субмоле-кулярных структур. В этом случае ионизирующее излучение выступает 1в качестве уникального инструмента биофизического анализа ферментов, нуклеиновых кислот и различных надмолекулярных комплексов ДНП, хроматина, рибосом и т. д. Используя математический аппарат теории мишени, можно на основании экспериментальных кривых доза — эффект установить геометрические размеры мишени, ответственной за данный тип инактивации макромолекулы. Модифицируя условия облучения, в ряде случаев можно добиться возникновения селективных поражений макромолекулы и оценить их роль в эффекте инактивации (например, если в результате облучения фермента разрушается определенный аминокислотный остаток и ири этом нарушается конформация активного центра и исчезает сродство к субстрату, то можно предположить, что данный структурный участок регулирует конформацию активного центра). Преимущество радиационного воздействия состоит еще ш в том, что с его помощью можно добиться возникновения узколокальных повреждений в любом участке молекулы, при этом другие структурные звенья останутся неповрежденными (существенно, что при этом макромолекулы могут оставаться сухими, находиться в вакууме или в любой газовой смеси, быть замороженными до любой температуры или параллельно подвергаться иным (воздействиям). [c.95]

    Нельзя не отметить заметно улучшившиеся за эти годы секвенирования ДНК транспортные формы радиоактивных предшественников для мечения нуклеиновых кислот. Так, раньше радиоизотопные препараты поставлялись для лучшей их сохранности в 50%-ном этаноле, что вынуждало исследователей тратить значительные усилия на испарение спирта и подвергать себя облучению в течение лишнего времени. Теперь данные радиопрепараты поставляются, как правило, в трицино-вом буфере в высококонцентрированном виде. Для большего удобства исследователей при обращении с малыми объемами радиоактивного вещества в раствор стали добавлять специальные инертные красители, не мешающие протеканию ферментативных реакций. Претерпели изменения и сами внутренние и внешние транспортные упаковки препаратов, ранее поставлявшихся только в сухом льду. На протяжении уже ряда лет фирма Amersham отказалась от поставок в сухом льду, тем не менее ее радиоизотопные препараты нареканий не вызывают. [c.99]


Смотреть страницы где упоминается термин Облучение сухих нуклеиновых кислот: [c.281]    [c.116]    [c.67]   
Смотреть главы в:

Радиационная химия органических соединений -> Облучение сухих нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты

облучение



© 2025 chem21.info Реклама на сайте