Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения характеристика

    ОБЩАЯ ХАРАКТЕРИСТИКА РАСТВОРОВ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ [c.436]

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]


    В условиях высокоскоростного нагрева процесс бертинирования торфа протекает с меньшей глубиной, чем при медленном нагреве меньше кислорода переходит в пирогенетическую воду и газ и больше в смолу. Значительная часть кислорода смолы входит в состав различного рода высокомолекулярных соединений, характеристика которых приводится в работе. [c.32]

    Рассмотрены основные направления химических превращений высокомолекулярных соединений нефтей и возможные пути пх химической переработки в продукты народнохозяйственного значения. Дана краткая характеристика важнейших современных методов разделения, исследования и анализа высокомолекулярных соединений нефти. [c.2]

    Тем не менее нельзя не признать, что подавляющее большинство уже известных высокоинформативных способов исследования гетероатомных и высокомолекулярных соединений нефтей пока лишь апробированы на отдельных, норой случайных объектах. Ясно, что без систематического массового применения этих способов к достаточно большому числу образцов самого различного происхождения нельзя получить общие количественные характеристики, которые могут лечь в основу фундаментальных закономерностей изменения состава нефтей- и нефтяных компонентов под влиянием природных и техногенных факторов. Авторы надеются, что приведенный краткий обзор напомнит исследователям об исключительной важности этой нелегкой, иногда просто рутинной работы и о многих нереализованных возможностях в коллективном строительстве стройного здания современной науки о природных органических веществах. [c.46]

    В главе В даны характеристика и идентификация высокомолекулярных соединений, характеристика макромолекул в растворе и характеристика макромолекулярных соединении в твердом состоянии. Изложены основные методы определения молекулярных весов полимеров, вискозиметрические определения в растворах и расплавах. Кратко рассмотрены вопросы структуры и механические свойства. [c.4]

    Метод термического разложения нелетучих компонентов неф тей в температурном интервале 600—900° С с последующей качественной и количественной характеристикой газообразных и жидких продуктов пиролиза методом газо-жидкостной хроматографии впервые применили геохимики [13—15]. Достоинствами этого метода являются его экспрессность и возможность проведения анализа с малыми количествами образцов. После удачного решения аппаратурно-методических вопросов [15] и установления на примере исследования самых различных каустобиолитов (в том числе и остаточной части нефтей) строгой корреляции между происхождением органической основы образца и содержанием бензола р продуктах его глубокого термического разложения этот метод вошел в практику геохимических исследований. Кроме того, реакция термической деструкции в сочетании с методами газовой хроматографии успешно применяется для изучения таких материалов, как уголь и различные полимеры [16—18]. В основе всех этих методов — исследование доступных для анализа (ГЖХ, масс-спектрометрия и др.) продуктов термического разложения высокомолекулярных соединений. [c.168]


    В табл. 1 в самой общей (усредненной) форме представлена характеристика элементного состава и структуры высокомолекулярных соединений по данным [7]. [c.12]

    Поскольку высокомолекулярные соединения нефти играют основную роль в формировании граничного слоя на твердой фазе, необходимо было оценить влияние содержания асфальтенов на толщину граничного слоя и его реологические характеристики. [c.116]

    Это, во-первых, молекулярная масса, полидисперсность и гибкость макромолекул, причем гибкость полимерных цепей является фундаментальной характеристикой высокомолекулярных соединений, качественно отличающей их от низкомолекулярных. [c.15]

    Огромное число возможных изомеров и близких гомологов высокомолекулярных углеводородов, сглаживание различия в их составе и свойствах и незначительные концентрации отдельных химических индивидуумов в смесях высокомолекулярных углеводородов нефти делают нецелесообразным, а часто и практически неосуществимым применение как основного направления изучения химической природы и свойства высокомолекулярных соединений нефти чисто аналитического метода исследования, т. е. метода выделения индивидуальных соединений из сложных смесей с последующей их характеристикой. [c.29]

    Структура и содержание второго издания книги претерпели существенные изменения. Главы II (Методы разделения высокомолекулярных соединений нефти) и X (Физические свойства смол и асфальтенов) совсем исключены, так как за последние годы появились специальные издания, в которых подробно описаны методы разделения, выделения и характеристики соединений, близких по свойствам к высокомолекулярной части нефти. Значительно дополнены новым материалом главы, посвященные углеводородам и асфальтенам. Радикально переработана глава о сераорганических соединениях, в которую вошло большое количество новых данных по избирательному каталитическому гидрированию сераорганических соединений нефти. Остальные главы книги мало изменились по сравнению с первым изданием, хотя и в них внесены некоторые дополнения и редакционные изменения. Заново написаны введение и [c.3]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]

    Экспериментальные данные, относящиеся к характеристике свойств и химического состава высокомолекулярных углеводородов наиболее высокой степени цикличности и конденсированности, содержащихся в сырых нефтях, показывают, что такие структуры, как конденсированные ароматические ядра, состоящие из трех и более бензольных колец, если и присутствуют, то лишь в незначительных количествах. Конденсированным ядром чисто ароматического характера, наиболее широко представленным среди высокомолекулярных соединений нефти, является, несомненно, нафталиновая система. [c.295]

    Термический анализ. Одним из методов физико-химического анализа высококипящих и особенно высокомолекулярных соединений нефти является термический анализ, служащий инструментом для исследования процессов, происходящих в веществе при непрерывном нагревании или охлаждении. В зависимости от измеряемой характеристики и аппаратурного оформления термическим анализом можно получить информацию различного характера. Термографией измеряется температура образца, термогравиметрией — его масса, дилатометрией — размер, калориметрией— количество выделившегося тепла [331]. [c.159]

    До 70-х годов химические превращения САВ в основном имели подчиненное значение и служили дополнительной информацией при установлении структурных характеристик. В настоящее время можно говорить об их химических свойствах (см. схему 5). Появление промышленного и полупромышленного источника концентратов САВ — процессов бензиновой деасфальтизации позволило провести широкое исследование химических превращений высокомолекулярных соединений нефти, изучить свойства полученных продуктов и выявить их специфические особенности. [c.297]


    Взаимодействие бумаги с краской имеет сложный механизм. Существенное влияние на качество оттиска оказывает взаимодействие компонентов краски, в частности растворителя и высокомолекулярного вещества, растворителя и пигмента-сажи. Несомненно, на этот процесс оказывает влияние взаимодействие между двумя видами дисперсной фазы в краске, сформированными структурными образованиями высокомолекулярных соединений и углеродным пигментом. Подобные вопросы в литерату эе практически не рассматривались и были поставлены в связи с современным этапом развития коллоидно-химической технологии нефтяного сырья. Рассматривая с этих позиций превращения в композициях краски, можно предположить возможность сорбции высокомолекулярных веществ на саже, выделение фазы из межчастичного пространства сажевых агрегатов и, наконец, образование двух несме-шивающихся видов дисперсной фазы в растворе. Указанные превращения играют решающую роль в поведении краски и должны учитываться при выборе оптима чь-ных компонентов красок и решении рецептурной задачи. Были изучены закономерности в реологических свойствах наполненных и ненаполненных сажей растворов высокомолекулярных соединений нефти в минеральных маслах, количественные характеристики удерживающей способности высокомолекулярных соединений нефти по отношению к минеральным маслам, закономерности изменения устойчивости получаемых растворов, определены параметры взаимодействия в этих растворах между высокомолекулярным веществом и пигментом. Практическим выходом работы явилось создание новой рецептуры черной печатной газетной краски на базе побочных продуктов процессов переработки нефти. [c.252]

    Вместе с тем равновесные свойства (термодинамические характеристики) образующихся растворов полимеров не зависят от способа их приготовления. Растворы высокомолекулярных соединений в большинстве случаев истинные. Однако на практике встречается весь спектр взаимодействий растворителей с полимерами - от способности образовывать истинные растворы до образования коллоидных систем с различной степенью дисперсности частиц полимера. [c.90]

    Физические характеристики полимерных материалов, свойства растворов и расплавов полимеров определяются не только молекулярной массой и полидисперсностью данного высокомолекулярного соединения, но и химическим и пространственным (стерическим) строением полимерной цепи, ее гибкостью, а также способами ее ассоциации с соседними макромолекулами. [c.122]

    Гибкость цепных макромолекул — отличительная и важная характеристика высокомолекулярных соединений, которая определяет весь комплекс их особых свойств. В результате гибкости макромолекулы постоянно меняют свою конфигурацию. Изменение формы макромолекулы происходит обычно или как результат вращательных колебаний ее отдельных частей около положений, соответствующих минимумам энергии, или в результате скачкообразных вращательных переходов от одной конформации к другой, обладающих минимумами энергии. [c.381]

    Значения показателя преломления, мольной и удельной рефракции используют не только для идентификации индивидуальных веществ, расчета электрических параметров а, i, Р, но и для установления концентрации растворов и расчета теплоемкости, изменения энтальпии при сгорании, критической температуры, молекулярной массы высокомолекулярных соединений и других характеристик веществ. Если в растворе нет ассоциации молекул растворенного вещества и при переходе в раствор не изменяется поляризуемость молекул растворителя и растворенного вещества, то мольная рефракция раствора равна сумме произведения мольных парциальных рефракций компонентов R. .... Rn на их мольные доли [c.11]

    Смолистые вещества, согласно этому взгляду, есть, так сказать, еще недоработанная нефть, или растворимые остатки нефтематеринского вещества. Многие неясные вопросы решаются в общем плане с принятием этой точки зрения достаточно просто. Присутствующие в нефти гетерогенные соединения, кислородсодержащие ароматические углеводороды, гибридные формы углеводородов являются продуктами ранних стадий превращения органического вещества, а высокие удельные веса нефтяных фракций, рапным образом и оптическая деятельность, свидетельствуют о неполной завершенности процессов превращения органического вещества. Высокомолекулярные соединения смолистых веществ в ходе процессов разукрупнения молекул образуют углеводородные вещества циклической структуры, переходящие из высших фракций в средние и низшие, вследствие чего бензиновые и керосиновые фракции тяжелых нефтей имеют высокие удельные веса. Таким образом, эта характеристика фракций непосредственно связана с природой смолистых веществ. Принцип наименьшего изменения молекул не позволяет думать, что разукрупнение молекул смолистых веществ сразу дает только удельно легкие осколки, которые могли бы образовать фракции с теми низкими удельными весами, которые характерны для нефтей значительного нревращения. [c.158]

    Одним из важнейших направлений развития физико-химической механики нефтяных дисперсных систем является изучение течения наполненных нефтяных систем, концентрированных растворов высокомолекулярных соединений нефти. Задача подобных исследований состоит в описании режимов течения нефтяных систем — растворов нефтяных фракций в широком интервале изменения физико-химических характеристик и концентраций их составляющих, типов растворителей и других факторов. Таким образом, на основании выявленных феноменологических закономерностей возможно будет выяснить качественные модели режима течения растворов нефтяных фракций. Прикладным значением таких моделей явится прогнозирование поведения нефтяных систем в процессах их добычи, транспорта и переработки, выявление новых направлений использования нефтяного сырья и создание на этой базе новых видов композиционных материалов. [c.86]

    Выявленная принципиальная возможность получения наполненных техническим углеродом растворов высокомолекулярных соединений нефти в минеральных маслах с широким диапазоном изменения их реологических характеристик и устойчивости предопределили проведение комплекса специальных исследований по оценке печатно-технологических свойств получаемых растворов. [c.265]

    Опыты показали, что теплота набухания зависит от природы полимера и от природы растворителя. Например, набухание 1 кг ацетилцеллюлозы в трихлорэтане сопровождается выделением 47,70 кДж, а в бензиловом спирте — лишь 34,31 кДж. Определение теплоты набухания очень важно для характеристики степени сольватации (гидратации) высокомолекулярных соединений. [c.333]

    Для фракционирования применяют также способ постепенного понижения температуры при постоянном составе жидкости. Препаративное разделение высокомолекулярных соединений широко применяется при научных исследованиях для характеристики полидисперсности полимеров. [c.383]

    Изучение процесса набухания высокомолекулярного соединения дает весьма ценные данные для его физико-химической характеристики. [c.301]

    Специфика коллоидных систем и растворов высокомолекулярных соединений проявляется в том, что масса отдельной частицы или отдельной микромолекулы намного больше массы молекулы дисперсионной среды (в случае золя) или растворителя (в случае раствора высокомолекулярного соединения). С этим связано различие многих молекулярнокинетических характеристик, на что обратил внимание Грэм, установивший различие коллоидов и кристаллоидов по величине коэффициента диффузии. [c.135]

    Химические превращения полимеров включают самые разнообразные химические реакции, в результате которых происходит изменение химического строения или степени полимеризации макромолекул. Химические превращения полимеров могут осуществляться целенаправленно для получения новых классов высокомолекулярных соединений и протекать самопроизвольно под действием тепла, света, кислорода воздуха, механических напряжений и других факторов при эксплуатации полимеров, что приводит к ухудшению их физико-механических характеристик. [c.51]

    СКВ биофизической аппаратуры разработан новый ультрафильтра-ционный прибор, предназначенный для концентрирования разбавленных растворов биополимеров, отделения высокомолекулярных соединений от низкомолекулярных, для обеосоливания и очистки растворов, а также фракционирования смесей. Характеристики прибора приведены ниже  [c.113]

    Показано, что МСС можно рассматривать как статистический ансамбль квазичастиц (псевдокомпонентов), средние энергетические характеристики молекулярных орбиталей которых определяют реакционную способность, термостойкость и другие свойства. Химическая активность нефтяных систем обусловлена особыми квазичастицами, включающими в определенной статистической пропорции все компоненты системы. Реакционная способность системы в целом обусловлена характеристиками электронной структуры этих частиц. Для углеводородных систем можно эмпирически определить параметры реакционной способности. Предложены способы определения энергии этих псевдомолекулярных орбиталей, основанные на установленной взаимосвязи интефальных показателей поглощения молекул органических соединений с их усредненными по составу эффективным потенциалом ионизации (ПИ) и сродством к электрону (СЗ). Установлено, что энергии псевдомолекулярных фаничных орбиталей определяют реакционную способность МСС в процессах полимеризации и олигомеризации, реакционную способность ароматических фракций в процессах карбонизации, растворимость асфальтенов. Исследованы эффективные СЭ и ПИ высокомолекулярных соединений и различных фракций, в том числе асфальто-смолистых веществ (АСВ). Доказана повышенная электронодонорная и элекфоноакцепторная способность последних. На основе представлений о поливариантности химических взаимодействий в многокомпонентных системах и образования [c.223]

    Гидрирование смолы, выделенной из ромашкинской нефти, проводилось в автоклаве в присутствии катализатора WSj— —NiS—AI2O3. Смола была выделена из смеси высокомолекулярных соединений ромашкинской нефти по методике, описанной в [23], и характеризовалась следующими свойствами мол. вес 929, содержание гетероатомов более 7% ( 4% серы, 2% кислорода и 1,0% азота), отношение С/Н равно 8,9. Растворенная в бензоле и, и циклогексане смола (2—5-кратное количество растворителя) подвергалась гидрированию при рабочем давлении 300 атм, температуре 300° С, в течение 40—80 час. Здесь также наблюдались реакции обессеривания исходных фракций и насыщение их водородом без снижения молекулярных весов, что указывает на то, что основная часть атомов серы находится в исходных сераорганических соединениях не в виде мостиков, а входит в состав гетероциклов. Каталитическому гидрированию с целью установления особенностей их химического строения подвергались природные нефтяные смолы [17]. Гидрогенизат отделялся от ка-тализата, от него отгонялся растворитель (в токе азота на водяной бане), после чего гидрогенизат доводился до постоянного веса в вакууме. После общей характеристики гидрогенизат разделялся на силикагеле АСК на углеводороды и смолы по методике, описанной в [23]. [c.123]

    Из высокомолекулярных соединений нефти только парафиновы-е углеводороды по форме молекулы соответствуют первому (парафины нормального строения) или второму (разветвленные парафины) типу. Остальные высокомолекулярные соединения нефти, как углеводороды, так и гетероорганические соединения, нельзя отнести ио форме ни к одному из трех приведенных выше геометрических типов молекул. Наиболее правильное представление о форме молекул этих соединений может дать сравнение их с гроздью винограда [5]. Поэтому для характеристики формы молекулы высокомолекулярных соединений нефти, за исключением парафинов, следует ввести четвертый тип — гроздьевидный. Эта форма окажется, по-видимому, более приемлемой, чем три вышеупомянутые, также и для характеристики молекул таких высокомолекулярных природных соединений, как лигнин, природные смолы и др. Со временем появятся, вероятно, и синтетические высокомолекулярные соединения, приближающиеся по структуре молекул к гроздьевидиой форме. [c.14]

    Формирование в нефтяной системе при высоких температурах необратимых агрегативных комбинаций высокомолекулярных соединений в присутствии агрегативных комбинаций пузырькового типа в конечном итоге приводит к образованию твердой пены — кокса. Подобные агрегативные комбинации, имеющие упорядочен-н уто структуру, часто называют кристаллитами. Кристаллиты являются необратимыми в высокотемпературной области структурами, представленными агрегативными комбинациями, образованными за счет химических связей продуктами термополиконденсации и уплотнения компонентов нефтяного сырья полициклических ароматических углеводородов, смол, асфальтенов, карбенов, карбоидов и др. В общем случае необратимую совокупность агрегативных комбинаций нефтяного происхождения, отличающуюся условно конечными физико-химическими и струкаурно-механичес-кими характеристиками, можно назвать сверхструктурой. [c.53]

    Испытания печатных красок проводятся для определения степени соответствия ее показателей нормам, регламентируемым стандартами и техническими условиями, либо для выбора оптимальных режимов печатания, обеспечивающих требуемое качество печатного оттиска и, наконец, с целью предусмотрения необходимых средств для подготовки краски к использованию. Нами определялись некоторые технологические характеристики растворов высокомолекулярных соединений нефти в минеральных маслах с целью оценки их пригодности для использования в качестве печатных красок. Смеси приготавливали с использованием масла МП-12, в которое добавляли 10% мае. ВМС. Растворение ВМС проводили при темпера1урах от 90 до 140°С в течение 30 минут при перемешивании, В процессе закрепления краски на оттиске част1. растворителей и низкомолекулярных компонентов связующего впитывается в поры бумаги. При этом возможны также проникновение в поры бумаги краски, а также коагуляция пигментов на поверхности бумаги. Последние два обстоятельства оказывают существенное влияние на качество оттиска. Определяющими показателями качества красок в этих случаях являются их дисперсность, реологические характеристики, агрегативная устойчивость против расслоения. С увеличением дисперсности системы, то есть с уменьшением размеров агрегатов частиц пигментов, увеличивается степень их проникповения б поры бумаги. От концентрации частиц и [c.265]

    Тяжелые нефтяные остатки (гудрон и др.) представляют собой очень сложные смеси углеводородов различных классов и их гетеропроизводных, состав которых во многом зависит от природы нефти. В процессе окисления этих продуктов, с целью получения битумов, протекает ряд параллельных и последовательных реакций, приводящих, в конечном счете к накоплению наиболее высокомолекулярных соединений асфальтенов. Механизм этих реакций в настоящее время изучен, однако для практических целей часто достаточно знать только количественные превращения основных комхюнентов, входящих в состав битумов. Опыты [84] показали, что процесс окисления битума протекает в два периода первый до температуры размягчения 50°С и второй от- 50 до 90°С. Согласно данным этих же авторов, наиболее интенсивно кислород воздуха расходуется в первый период процесса, который длится значительно меньше времени, чем второй. Полученные ими данные, а также элементарный анализ указанных фракций, позволивших определить их структурно-групповую характеристику по методу Корбетта [82], показали, что количество ароматических колец в процессе окисления в моно- и бициклоароматических углеводородов уменьшается, а в бензольных смолах и асфальтенах растет, тогда как в спиртобензольных смолах наблюдае гся минимум ароматичности на границе двух периодов окисления. [c.34]

    Терентьев А. П., Яновская Л. А. Химическая литература и пользование ею (М., Химия, 1967), Содержит описание главных химических (и некоторых других) справочников, энциклопедий и реферативных журналов, краткую характеристику обзорных и специальных журналов, а также перечень монографий по всем разделам химии и химической технологии. Имеются следующие разделы Органйческая химия , Прикладная химия , Химия высокомолекулярных соединений , Фармацевтическая химия , Биологическая химия . Отдельный раздел посвящен технике и методике работы о литературой. В приложении приведена синоптическая таблица химических журналов (72 наименования), дающая сведения, какие (или какой) тома вышли в том или ином году (по 1966 г.). [c.180]

    Химия высокомолекулярных соединений относится к чрезвычайно быстро развивающимся отраслям науки, достижения которой широко используются в народном хозяйстве. Основными направлениями экономического и социального развития СССР на текущую пятилетку и период до 1990 года предусмотрено дальнейшее развитие производства высококачественных полимеров с заданЕЕЫми техническими характеристиками, в том числе и такими, которые бы позволили максимально заменить полимерами пищевое сырье, расходуемое на технические цели. [c.3]

    В настоящее время накоплен достаточно большой багаж количественных данных, позволяющих оценивать характеристики и свойства высокопо/[имеров, а также описывать процессы, связанные с образованием макромолекул и превращением их в другие соединения. Основные закономерности химии высокомолекулярных соединений изложены в ряде монографий и учебников. Однако для свободного владения теоретическими основами химии ВМС недостаточно пассивного усвоения уравнений и формул. Необходимы практические навыки применения полученных, знаний для решения конкретных задач. Практика преподавания курса Химия и технология высокомолекулярных соединений в Горьковском политехническом институте им. А, А. Жданова показала, что двоение студентами материала по химии высокополимеров значительно улучшается, если лекции сопровождаются не только лабораторным практикумом, но и решением задач и выполнением расчетных курсовых работ. Исходя из опыта нашей работы, мы считаем, что решение задач должно быть обязательной составной частью курса химии высокомолекулярных соединений. Но пока, к сожалению, ни в нашей стране, ни за рубежом нет учебных пособий с достаточным количеством задач по всем разделам названной дисциплины. Лишь в пособие А. А. Геллер и Б. Э. Геллера (Практическое руководство по физико-химии волокнообразующих полимеров. Л., Химия, 1972) и монографию Дж. Оудиана (Основы химии полимеров. М., Мир, 1974) включено наряду с контрольными вопросами небольшое число расчетных задач. [c.3]

    Глава XXIII. ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ (ПОЛИМЕРЫ) I. Общая характеристика [c.372]


Смотреть страницы где упоминается термин Высокомолекулярные соединения характеристика: [c.117]    [c.452]    [c.34]    [c.14]    [c.95]    [c.2]    [c.28]    [c.218]   
Химия и технология полимеров Том 1 (1965) -- [ c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения



© 2025 chem21.info Реклама на сайте