Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспортная форма

    В тканях растений Ц. довольно быстро распадаются с отщеплением боковой цепи и далее с разрывом пуринового кольца более устойчивы (но менее активны) их транспортные формы, а также запасные формы - конъюгаты, к-рые Ц. образуют с глюкозой, аланином и нек-рыми белками, присоединяя их к атомам N кольца или атомам О боковой цепи. [c.389]

    Наш обычный пищевой сахар — сахароза — синтезируется во всех зеленых растениях и только в них, где служит в основном транспортной формой сахара сахароза образуется как в хлоропластах, так и в других местах, где накапливается крахмал, прекрасно растворяется в воде. Поскольку полуацетальные группы двух составляющих ее углеводных колец блокированы, она химически инертна ). Однако с термодинамической точки зрения сахароза является активным соединением, так как потенциал переноса ее глюкозильной группы составляет 29,3 кДж- моль . Транспорт сахара в форме дисахарида имеет для растений то преимущество, что дисахарид создает меньшее осмотическое давление, чем те же количества сахара, транспортируемого в виде моносахарида. [c.530]


    Продукты гидролиза пищевых и тканевых триацилглицеролов, в частности высшие жирные кислоты, участвуют непосредственно в образовании сложных белков—липопротеинов плазмы крови. В составе липопротеинов, являющихся, таким образом, транспортной формой жирных кислот, они доставляются в органы-мишени, в которых жирные кислоты служат или источником энергии (сердечная и поперечно-полосатая мускулатура), или предшественниками синтеза тканевых триацилглицеролов с последующим их отложением в клетках ряда органов (депо липидов). [c.547]

    Сахароза является главной транспортной формой углеводов в растениях. Она образуется во время фотосинтеза в листьях, затем поступает в капилляры растений — ситовидные трубки, вслед за ней под действием осмоса в них поступает вода. Вместе с током воды сахароза транспортируется вниз к корням. [c.221]

    Функциональное значение трансаминирования в различных тканях неодинаково. Так, значительная часть азота аминокислот работающей мыщцы приходится на аланин, который синтезируется путем трансаминирования пирувата, образующегося из глюкозы, затем он поступает в кровь и поглощается печенью, где вновь в процессе непрямого дезаминирования превращается в пируват, который вовлекается в процесс глюконеогенеза, а аминогруппа утилизируется в печени с образованием мочевины. Таким образом, аланин, по-видимому, в плазме крови является главной транспортной формой азота, а в печени служит ключевым предщественником глюкозы белкового происхождения (рис. 24.6). [c.378]

    Главной транспортной формой углеводов в растениях является  [c.562]

    ЛНП — липопротеины низкой плотности (или Р-ЛП), содержат большое количество холестерина и являются транспортной формой его  [c.153]

    Сахароза, играющая важную роль в обмене веществ, накапливается сахарной свеклой и сахарным тростником. Синтез сахарозы связан с фосфорным обменом. Крахмал, образующийся в листьях при фотосинтезе, легко превращается в сахарозу — транспортную форму углеводов. В виде сахарозы синтезированные углеводы перемещаются в семена, клубни, луковицы растений, где сахароза снова превращается в крахмал (или инулин). [c.401]

    Повреждение молодых формирующихся листьев, особенно на верхушке, происходит в основном за счет притока токсических веществ воздуха из сформированных листьев вместе с транспортными формами метаболитов.—Прим. ред. [c.44]

    Жирные кислоты свободные — одна из транспортных форм липидов в плазме крови. Это наиболее метаболически подвижная транспортная форма липидов в крови. Содержание свободных жирных кислот в крови составляет 15 25 мг% и значительно возрастает после приема жирной пищи. [c.234]


    Хиломикроны — транспортная форма ------------- ---------------- [c.258]

    Восстановительное аминирование а-кетоглутарата в глутамат. Глутамат в реакциях трансаминирования с пируватом образует аланин (особенно в мышцах). Глутамин и аланин являются резервными и транспортными формами аммиака. [c.260]

    Липопротеины Липид Компоненты мембран Липопротеины крови — транспортная форма липидов [c.131]

    Различают экзоэргические реакции, протекающие с уменьшением свободной энергии, и эндоэргические, сопровождающиеся ее поглощением. В биоэнергетическом отношении в живых организмах имеет значение только свободная энергия. При биохимических процессах, как правило, свободная энергия, содержащаяся в исходных веществах, полностью не используется, так как часть ее остается во вновь образованных при реакциях соединениях. Так, освобождающаяся при окислении различных органических соединений свободная энергия может большей своей частью связываться некоторыми высоко-эргическими соединениями. Эти вещества участвуют в ряде разнообразных специфических биохимических процессов, выполняя роль ((резервной и транспортной формы энергии. В высокоэргических соединениях энергия распределена не равномерно, а сконцентрирована в отдельных связях молекул. Эти связи В. А.Энгельгардтназвал макроэргическими связями. Макроэргическими связями богаты различные эфиры фосфорной кислоты полифосфаты и пирофосфаты [c.94]

    Почти все исследователи [9—11] утверждают, что витамины группы Р способствуют накоплению и лучшему использованию в организме аскорбиновой кислоты. По мнению Е. Шамрая [12], полифенолы (витамины группы Р) способствуют переходу аскорбиновой кислоты в дегидроаскорбиновую кислоту, которая является транспортной формой первой. Проходя через мембраны внутрь клеток тканей, дегидроаскорбиновая кислота восстанавливается там в аскорбиновую кислоту, способствуя ее накоплению. Общеизвестно специфическое действие витамина Р, выражающееся в укреплении стенок кровеносных капилляров [13, 14], в подавлении гиперфункции щитовидной железы [13, 15]. Имеются также соображения, что эти витамины образуют с протеином ферментный комплекс, являющийся переносчиком водорода в организме [16, 17]. Указанное свидетельствует о важном значении витаминов группы Р для человека. [c.380]

    В последнее время появились данные, доказывающие, что креатинфосфат в мышечной ткани (в частности, в сердечной мышце) способен выполнять не только роль как бы депо легкомобилизуемых макроэргических фосфатных групп, но также роль транспортной формы макроэргических фосфатных связей, образующихся в процессе тканевого дыхания и связанного с ним окислительного фосфорилирования. Предложена схема переноса энергии из митохондрий в цитоплазму клетки миокарда (рис. 20.7). АТФ, синтезированный в матриксе митохондрий, переносится через внутреннюю мембрану с участием специфической АТФ—АДФ-транслоказы на активный центр митохондриального изофермента креатинкиназы, который расположен на внешней стороне внутренней мембраны в меж-мембранном пространстве (в присутствии ионов Mg ) при наличии в среде креатина образуется равновесный тройной фермент-субстратный комплекс креатин—креатинкиназа—АТФ—Mg , который затем распадается с образованием креатинфосфата и АДФ —Mg . Креатинфосфат диффундирует в цитоплазму, где используется в миофибриллярной креатинкиназной реакции для рефосфорилирования АДФ, образовавшегося при сокращении. Высказываются предположения, что не только в сердечной мышце, но и в скелетной мускулатуре имеется подобный путь транспорта энергии из митохондрий в миофибриллы. [c.655]

    Гиббереллины выделяют практически из всех частей растений их запасные и транспортные формы представляют собой гликозиды и комплексы с белками. Место биосинтеза гиббереллинов — корни, верхушечные стеблевые почки и разаивающиеся семена. Имеются данные, что гиббереллины синтезируются в побегах, затем транспортируются в корни, где трансформируются в активные формы, после чего снова аозвращаются в побеги, где и проявляют стимулирующий эффект. Механизм их биологического действия исследован недостаточно. Известно лишь, что в зернах ячменя они изменяют свойства мембран и индуцируют синтез а-амилазы, а в тканях ряда других растений изменяют наборы РНК и функционирующих ферментов. [c.717]

    ЛОНП — липопротеины очень низкой плотности (или пре- -ЛП), они образуются в печени и являются главной транспортной формой эндогенных триглицеридов  [c.153]

    Сахароза, или тростниковый сахар,— дисахарид, состоящий йз глюкозы и фруктозы. Сахарозу синтезируют многие растения, у высщих же животных она отсутствует. В отличие от мальтозы и лактозы у сахарозы нет свободного аномерного атома углерода, поскольку оба аномерньгх атома моносахаридных остатков- связаны друг с другом (рис. 11-12) поэтому сахароза не является восстанавливающим сахаром. В биохимии растений этот дисахарид-своего рода загадка. Дело в том, что если D-глюкоза служит основным строительным блоком как крахмала, так и целлюлозы, то сахароза-основной промежуточный продукт фотосинтеза. У многих растений именно в форме сахарозы транспортируются по сосудистой системе сахара из листьев к другим частям растения. Преимущество сахарозы перед глюкозой как транспортной формы сахаров заключается, вероятно, в том, что ее аномерные атомы углерода связаны друг с другом это предохраняет сахарозу от атаки окислительных или гидролитических ферментов в процессе ее переноса из одной части растений в другую. [c.310]


    Образование глютамина и аспарагина из аммиака и глк1таминовой и аспарагиновой кислот является одним из путей обезвреживания аммиака, так как аспарагин н глютамин токсическими свойствами не обладают (стр. 337). Далее аспарагин и глютамин выполняют функции транспортной формы аммиака, перенося последний из тканей в ночки. Было, например, показано, что основным источником аммиака мочи является глютамин крови, который, проходя через ночки, дезаминируется глютамина-зой образующийся при этом аммиак выделяется из организма в виде аммонийных солей. [c.355]

    Образование аспарагина и глутамина имеет место и у животных получены убедительные доказательства важной роли глутамина в качестве резервной и транспортной форм аммиака в интактном организме животных [62]. Глутамин является одним из главных небелковых азотистых веществ крови у млекопитающих у человека на его долю приходится около 20% аминного азота крови. В жидкостях тела концентрация глутамина, как правило, выше концентрации глутаминовой кислоты в тканях наблюдаются обратные соотношения. Найдено, что глутамин переходит в клетки значительно легче, чем глутаминовая кислота. Так, например, при внутривенном введении экспериментальным животным глутамин (но не глутаминовая кислота) может проникать в мозг [63]. Установлено также, что глутамин всасывается в желудочно-кишечном тракте как таковой заметного гидролиза глутамина в процессе всасывания не происходит [18, 64]. Амидный азот глутамина подвергается в печени ряду превращений, в том числе превращениям, в итоге которых образуется мочевина. Амидная группа глутамина служит, кроме того, главным источником аммиака мочи. [c.174]

    Транспортные формы липидов в крови. Продукты расщепления пищевых липидов вступают в ресинтез, поступают в лимфу, а затем в кровь. Непосредственно в кровь поступают также некоторые липиды. Она переносит липиды в различные органы и ткани в виде транспортных форм хи-ломикронов, а- и Р-липопротендов, свободных жирных кислот (табл. 9). [c.249]

    Исследование комплексов железа с антихлороз-ными препаратами (диэтилентриаминпентаацетат и др.) позволит получить сведения о транспортных формах железа в растениях и о роли комплексообразования в этих процессах. [c.200]

    Большая часть всех всосавшихся и ресинтезированиых липидов поступает в лимфатические сосуды и затем в кровь, меньшая часть — непосредственно в кровяное русло. Током крови [ипиды переносятся в печень, к периферическим тканям и в жировое депо, где происходят процессы промежуточного обмена. Посредством крови происходит постоянный обмен липидами между отдельными органами. Транспортными формами липидов являются липопротеины и фосфатиды. [c.397]

    Синтезирован также другой новый тип природных фосфолипидов — 0-аминокислотные эфиры фосфатидилглицерина (Юл. Г. Молотковский, Л. Д. Бергельсон). Этот класс соединений, выделенный недавно из липидов различных бактерий, вызывает большой интерес, так как соединения такого рода возможно представляют собой транспортную форму аминокислот, участвующую в биосинтеве белка. [c.543]

    Следовые количества аммиака присутствуют в сыворотке крови в виде ионов аммония. Транспортные формы аммиака — глутамин и аланин — выполняют две основные функции. Глутамин является донором амидной группы для биосинтезов пуриновых азотистых оснований, карбамоилфосфата, глюкозамина, триптофана и других соединений в тканях с выраженной пролиферативной активностью (кишечник, опухоли и др.), а также основным источником амидной группы для конечного обезвреживания аммиака в почках в виде аммонийных солей. Аланин транспортирует аммиак в виде аминогруппы в печень, где используется для синтеза мочевины, а оставшийся [c.260]

    Фосфорилированные и нефосфорилированные формы витамина В всасываются в кишечнике при этом происходит фосфорилирование нефосфорилированных форм. Пиридоксальфосфат является главной транспортной формой витамина в плазме крови. В настоящее время известно более 20 пиридоксальзависимых ферментов, специфичность которых определяется апоферментами. Пиридоксальфосфат является простетической группой аминотрансфераз, катализирующих обратимый перенос аминогруппы от аминокислоты [c.350]

    Обьгано около 90% всех переносимых по флоэме питательных веществ составляет дисахарид глюкоза. Это сравнительно инертный и хорошо растворимый углевод, который не играет почти никакой роли в метаболизме и поэтому служит идеальной транспортной формой, так как маловероятно, чтобы он расходовался в процессе переноса. Основное предназначение сахарозы — вновь превратиться в более активные моносахариды — глюкозу и фруктозу. Высокая растворимость позволяет ей достигать во фло-эмном соке очень высокой концентрации, например у сахарного тростника она составляет до 25% (масса/объем). [c.129]


Смотреть страницы где упоминается термин Транспортная форма: [c.561]    [c.385]    [c.389]    [c.257]    [c.315]    [c.531]    [c.100]    [c.549]    [c.111]    [c.282]    [c.755]    [c.21]    [c.240]    [c.240]    [c.91]    [c.211]    [c.364]    [c.431]   
Молекулярная биология клетки Том5 (1987) -- [ c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Транспортная РНК



© 2025 chem21.info Реклама на сайте