Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гены-носители наследственности

    Нуклеиновые кислоты, прежде всего ДНК, являются материальными носителями наследственной информации и определяют видовую специфичность организма, сложившуюся в ходе биологической эволюции. Важно уяснить, что носителями наследственной (генетической) информации являются именно пуриновые и пиримидиновые основания, подобно тому, как боковые заместители аминокислот определяют пространственное строение и функциональные свойства белков. Сочетания трех рядом стоящих нуклеотидов в цепи ДНК называются триплетами оснований, или кодонами. Сумма всех кодонов ДНК составляет генетический код (см. главу 12). Молекула ДНК организована в клетке в структурные единицы — гены. Гены, в свою очередь, локализованы в хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую фенотипический признак орга- [c.285]


    В то же время следует помнить, что все перечисленные свойства генетического материала существуют в диалектическом единстве. Их нельзя отрывать друг от друга и изучать изолированно. Так, например, свойства дискретности и непрерывности составляют некую об цую характеристику носителей наследственной информации. Дискретные единицы — гены — составляют единое целое в виде группы сцепления — хромосомы — и входят в обилую систему более высокого порядка — систему генома, систему функционирующих генов различных клеток многоклеточного организма и т. л. [c.259]

    За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конц 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира. [c.185]

    Нуклеиновые кислоты построены гораздо сложнее. Их молекулы очень велики и состоят из более простых единиц — нуклеотидов, соединенных в самых разнообразных пропорциях и в различной последовательности. Число возможных видов нуклеиновых кислот почти бесконечно, и считается, что специфические различия между ними имеют исключительно важное значение. Многие полагают, что эти структуры являются основной составной частью генов — носителей наследственных признаков. [c.11]

    В 1953 г. американский химик Дж. Уотсон (род. 1928) и английский физик Ф. Крик (род. 1916), обобщив работы многих ученых, описали вторичную структуру дезоксирибонуклеиново кислоты, представив ее в виде двойной спирали. Эта модель сыграла важную роль в развитии генетики. В 1958 г. за исследование строения индивидуальных белков, а в 1980 г. за определение строения генов-носителей наследственной информации в организмах дважды был удостоен Нобелевской премии Ф. Сенгер (род. 1918). [c.8]

    Гены - носители наследственности [c.46]

    Наконец, молекулярная биология установила, что гены представляют собой участки молекул ДНК, входящих в состав хромосом. Уточнение материального носителя наследственности можно представить следующей исторической схемой  [c.484]


    До того как были расшифрованы загадки строения и функционирования нуклеиновых кислот, проблемы воспроизведения живых организмов и передачи наследственных признаков в живых организмах биологическая наука связывала с понятиями хромосома и ген . Термин хромосома означал такую структурную единицу в ядре клетки, которая являлась носителем наследственной информации. Под термином ген понимали часть хромосомы , которая контролирует передачу отдельных характерных наследственных признаков цвет глаз, цвет волос и т. д. [c.533]

    Как установлено в настоящее время, ДНК является материальным носителем наследственности и входит в состав генов, из которых состоят хромосомы клетки. Наличие периода идентичности в 34 А на рентгенограмме кристаллической ДНК (в виде литиевой соли), учет известных размеров атомов, расстояний между ними и валентных углов, а также результаты других исследований привели Крика и Уотсона к выводу, что макромолекулы ДНК связаны между собой попарно при помощи водородных мостиков в виде двойной спирали постоянного диаметра (рис. 49). При этом остатки гетероциклических оснований, находящиеся в боковой цепи, упакованы в середине спирали, как стопка монет. Аналогичную структуру имеет РНК. [c.248]

    К концу XIX столетия биологи обнаружили, что хромосомы (которые становятся различимыми в ядре в начале деления) являются носителями наследственной информации. Но данные о том, что веществом, из которого состоят гены, является дезоксирибонуклеиновая кислота (ДНК) хромосом, были получены значительно позже при изучении бактерий. В 1944 г. было установлено, что очищенная ДНК одного бактериального щтамма способна передавать наследственные свойства этого щтамма другому щтамму, несколько отличному от первого. Это открытие оказалось слишком неожиданным и не получило широкого признания до начала 50-х годов, так как считалось, что лишь белки обладают достаточно сложной конформацией, чтобы быть носителями заключенной в генах информации. Сегодня представление о том, что именно ДНК является носителем генетической информации (хранящейся в ее длинных полинуклеотидных цепях), столь прочно вошло в биологическое мышление, что порой трудно осознать, какой огромный пробел в наших знаниях заполнило это представление. [c.123]

    Ядерная наследственность, связанная с распределением носителей наследственности — генов, локализованных в хромосомах. [c.394]

    Гибридологический анализ, разработанный Менделем, и результаты, полученные на его основе, заложили концепцию фундаментального понятия генетики и биологии в целом — понятие гена. В последние десятилетия XIX в. были обнаружены хромосомы, описаны митотическое и мейотическое деления клетки. Тем не менее не были известны материальные носители наследственной информации. Только после того как законы Менделя были открыты вновь в 1900 г., сопоставление менделевского расщепления признаков и распределения хромосом в мейозе позволило сделать окончательный вывод о том, что именно хромосомы являются носителями генетической информации. Этими событиями ознаменовалось начало нового научного периода развития генетики, а наблюдения и выводы Менделя и в настоящее время составляют важнейшую главу учения о наследственности и изменчивости. [c.89]

    Для профилактики указанных заболеваний в настоящее время идут по пути выявления носителей крайне нежелательных генетических признаков и оказания соответствующей генетической консультации ). Если и отец, и мать являются носителями дефектного гена, то риск рождения ребенка с болезнью Тея — Сакса составляет 1 4. Так, в группе из 32 беременных женщин, уже имевших ребенка с болезнью Тея — Сакса, определяли генетический статус плода методом амниоцентеза ). В соответствии с теоретическим предсказанием 8 эмбрионов из 32 имели наследственный дефект. В этой группе 7 женщин предпочли сделать аборт у восьмой диагноз поставлен был слишком поздно и родился ребенок с болезнью Тея — Сакса [27]. [c.545]

    ДНК производит ДНК, производит РНК, производит Белок , Это утверждение говорит о том, что носителем наследственной информации является ДНК. В конечном счете этот молекулярный материал ответственен за точную передачу информации от родительских клеток к дочерним и за контроль над всей совокупностью химической активности в нормальной клетке, что осуществляется посредством каталитических белков. С точки зрения генетиков, хромосомы содержат дискретную линейную нуклеиновую кислоту, каждый из участков которой, называемых генами, ответственен за образование специфического клеточного продукта. Эти продукты генов являются либо полипептидами, либо структурными молегу- [c.197]

    Теория радикалов была с восторгом принята Берцелиусом и виталистами, которые, как и в наше время реакционные менделисты-морганисты со своим неизменным наследственным веществом — генами, искали устойчивого начала, который мог бы быть носителем жизненной силы . [c.9]

    К настоящему времени основные механизмы синтеза белка в организме уже не являются белым пятном молекулярной биологии. ДНК и РНК, которые (по крайней мере одна из них) входят в состав любого живого организма, играют в этих процессах решающую роль. ДНК содержит информацию наследственности. Отдельные участки длинной цепи ДНК содержат азотистые основания в определенной последовательности. Эти участки и являются носителями определенных наследственных признаков. В длинной цепи ДНК возможно очень большое число вариантов сочетания различных азотистых оснований и поэтому одна молекула ДНК может нести громадное количество самой разнообразной информации. Эти отдельные участки цепи ДНК, собственно, и являются генами , ответственными за тот или иной наследственный признак. [c.426]


    Важно уяснить, что именно основания, пуриновые или пиримидиновые, являются носителями генетической информации, подобно тому как боковые цепи аминокислот определяют химические и функциональные свойства аминокислоты. Носитель наследственной информации — молекула ДНК — организована в клетке в структурные единицы — гены. Эти последние в свою очередь локализованы в особых структурах — хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую специфический признак цвет глаз и волос, рост, пол и т. д. Однако для описания на молекулярном уровне ген — довольно сложное образование, так как число молекулярных стадий при реализации конкретного признака может быть весьма велико. Отметим, что любой генетический признак реализуется с помощью белкового синтеза (структурного белка либо фермента), и введем понятие более простого элемента — цистрона. Цистрон определяют как часть ДНК, которая несет генетическую информацию (кодирует) о синтезе лищь одной полипептидной цепи. Хромосома содержит много сотен цистронов. Все количество ДНК, содержащееся в клетке, называется геномом. [c.108]

    Генетика микроорганизмов характеризует их наследственность, и изменчивость. Носителями наследственности являются хромосомы, которые состоят из ДНК. Именно в молекуле ДНК закодирована генетическая информация, которая контролирует все процессы обмена, роста и размножения. Каждому признаку соответствует в качестве носителя информации определеный ген (функциональная генетическая единица). Обмен генетическим материалом происходит у микроорганизмов тремя путями трансформацией, трансдукцией и конъюгацией [1]. [c.17]

    Всякое живое существо по большинству своих признаков сходно со своими предками. Сохранение специфических свойств, т.е. постоянство признаков в ряду поколений, называют наследственностью. Изучением передачи признаков и закономерностей и Г наследования занимается генетика. Каждому признаку в качестве носителя информации соответствует определенный ген. Еще во времена классической генетики исследователи пришли к выводу, что гены находятся в клеточном ядре. Тогда же было уС ан6цлено, что они должны располагаться в линейном порядке. Долгое время считали, что наследственная информация связана с белковыми компонентами нуклеоплазмы. Лишь после успешных экспериментов по передаче наследственных признаков с помощью ДНК. (см. разд. 15.3.4) генетики пришли к убеждению, что именно ДНК, входящая в состав хромосом у всех организмов, служит материальным носителем наследственной информации, Сначала на насекомых, а затем на микроорганизмах было показано, что проявление признаков зависит от активности ферментов. У микроорганизмов ферменты можно было связать с конкретными признаками, поддающимися точному биохимическому определению. Гипотеза один ген-один фермент гласит, что определенный ген содержит информацию, необходимую для синтеза определенного фермента (позднее была принята более точная формулировка каждый структурный ген кодирует определенную полипептидную цепь). Изменение гена вследствие мутации приводит либо к утрате фермента, либо к изменению его свойств, а тем самым и к изменению признака. Гены выявляются только благодаря мутациям. Генетический анализ основан прежде всего на изучении различий в признаках, определяемых альтернативными формами (аллелями) того или иного гена. Поэтому исследование различных генетических проблем ведется на мутантах. [c.434]

    Еще в 70-х годах XX в. появились принципиально новые технологии, которые мы сегодня называем генетической инженерией. Их суть сводится к следующему (рис. 2). В клетке эукариот есть хромосомы (расположенные в ядре носители наследственной информации, заключенной в ДНК), а у прокариот — еще и плазмиды (вне-хромосомные носители ДНК). Делясь, клетка наследует как хромосомную, так и нлазмидную ДНК, которые можно выделить в разных пробирках. Плазмида служит своего рода транспортом для доставки в клетку любого гена. Что для этого надо Разрезать плазмиду и вставить в место разреза нужный ген. После этого плазмиду вводят, например, в кишечную палочку, которая в итоге содержит нужный ген (скажем, отвечающий за выработку инсулина или интерферона) и представляет собой ГМ-объект. За подобные упражнения уже вручено немало Нобелевских премий. [c.55]

    Постоянство числа, индивидуальность и сложность строения, авторепродукция и непрерывность в последовательных генерациях клеток говорят о большой биологической роли хромосом. Действительно, установлено, что хромосомы являются носителями наследственной информации (см. главу VII). Выяснено, что наследственная информация дискретна, ее составляют многочисленные гены, расположенные вдоль хромосом в линейном порядке. Каждый ген занимает свое постоянное, определенное место (л оку с) в определенной хромосоме. [c.36]

    ХРОМОСОМЫ, структурные элементы клеточного ядра, являющиеся носителями генов и определяющие наследственные св-ва клеток и организмов. Способны к самовоспроизведению, обладают структурной и функциональной ивдиввдуаль-ностью и сохраняют ее в ряду поколений. Основу X. составляет нуклеопротеид хроматин. Запись наследственной информации в X. обеспечивается строением ДНК, ее генетическим кодам. Белки, содержащиеся в X., участвуют в сложной упаковке ДНК и регуляции ее способности к синтезу РНК - транскрипции. [c.322]

    Генная терапия, т. е. лечение с помощью генов (точнее, с помощью нуклеиновых кислот — материальных носителей наследственности) — одно из самых молодых и перспективных направлений медицины. Датой ее рождения считается сентябрь 1990 г. Тогда группе американских ученых удалось впервые осуществить успешное лечение тяжелой наследственной болезни — врожденного иммунодефицита, введя чужеродный ген (вернее, целую генную конструкцию) в клетки костного мозга больной девочке Ашанте де Силва. [c.136]

    Публикация выводов Эйвери, Мак-Леода и Мак-Карти в 1944 г, была принята с большим удивлением и недоверием, так как едва ли кто-либо ранее придавал ДНК такую информационную роль. Существовало предположение, что ДНК выполняет какую-то функцию в наследственных процессах, особенно после того, как Фёльген в 1924 г. показал, что ДНК является основным компонентом хромосомы. Но существовавшие тогда представления о молекулярной природе ДНК делали почти невероятным вывод, согласно которому ДНК могла быть носителем наследственной информации. Во-первых, начиная с 1930 г. существовало общепризнанное мнение, что ДНК представляет собой простой тетрануклеотид, состоящий из остатков адениловой, гуаниловой, тимидиловой и цитидиловой кислот (фиг. 73). Во-вторых, даже когда в начале 40-х годов наконец установили, что молекулярная масса ДНК на самом деле значительно выше, чем это следует из тетрануклеотидной теории, многие еще продолжали верить, что тетрануклеотид служит основной повторяющейся единицей большого полимера ДНК, в котором четыре пуриновых и пиримидиновых основания чередуются, образуя периодическую последовательность. ДНК, следовательно, рассматривалась как монотонно однообразная макромолекула, которая, подобно другим монотонным полимерам, таким, как крахмал (см. гл. II), всегда одинакова, независимо от природы ее биологического источника. Вездесущему присутствию ДНК в хромосомах большей частью приписывали чисто физиологическую или структурную роль. В то же время считали, что именно хромосомный белок придает информационную роль генам, поскольку еще в начале века были определены большие различия в специфичности структуры гетеро-логичных белков одного и того же организма или гомологичных белков различных организмов. Эйвери, Мак-Леод и Мак-Карти понимали во всей полноте трудность обоснования генетической роли ДНК и в заключительной части своей работы высказали следующее утверждение Если результаты представленного исследования о природе трансформирующего начала подтвердятся, то придется признать, что нуклеиновые кислоты обладают биологической специфичностью, химическая основа которой еще не установлена . [c.159]

    Таким образом, по мнению Херили и Чейз, роль носителя наследственности принадлежит фаговой ДНК, и эта точка зрения прекрасно согласуется с открытием, сделанным ранее Эйвери, Мак-Леодом и МакКарти, которое мы рассматривали в гл. VII. Они установили, что при трансформации бактерий гены бактерии-донора передаются клетке-реципиенту исключительно при посредстве молекул бактериальной ДНК. Оглядываясь назад, невольно удивляешься тому, что даже в 1952 г., спустя 8 лет после открытия генетической роли бактериальной ДНК, ни в одной из многочисленных гипотез о природе фага еще не фигурировало предположение о том, что ДНК может служить генетическим материалом также у вирусов бактерий. [c.265]

    В то же время его соображения о сложности взаимоотношений ген —форма точно отражают сложившуюся в настоящее время в биологии ситуацию. Действительно, мы еще очень мало знаем о том, что представляет собой программа развития организма. Говорят, что она целиком записана в веществе-— носителе наследственности, т. е. ДНК. Доля истины в этом утверждении есть, В ДНК на самом деле записана наследственная информация, но из того, что сейчас известно, можно судить лишь об одной форме ее реализации— последовательно1М появлении в ходе индивидуального развития организма все новых и новых биологически активных молекул, среди которых есть и специфические для тканей и клеток, специализирующихся в разных направлениях. Закономерности появления этих продуктов на разных стадиях онтогенеза действительно контролируются ДНК и связаны с активацией (или инактивацией) генов, кодирующих соответствующие белки или другие макромолекулы (например, рибосомная или транспортная РНК), или с изменением состояния участков ДНК, регулирующих экспрессию этих генов (время активации или степень активности). Однако развитие не сводится к развертыванию последовательных цепей молекулярных событий и метаболических циклов. Оно проявляется также в процессах формообразования, в становлении специализированных органов и тканей, и эти органы [c.404]

    Менделевские законы стали известны в мировой науке лишь после их вторичного открытия в 1900 г., независимо друг от друга, Г. де Фризом, К. Корренсом и К. Черма-ком. Дальнейшее развитие генетика получила в трудах Т. Моргана с сотрудниками, экспернментально доказавшими, что основными носителями наследственной информации являются хромосомы, в которых наследственные факторы — гены — располагаются линейно. Затем накоп- [c.11]

    Наиболее ярко автогенетические тенденции нашли выражение в теориях Лотси (1911) и Бетсона (1914). Появлению этих теорий предшествовал период бурных исследований основных закономерностей наследственности. К этому времени твердо укрепилось представление о существовании материальных носителей наследственности — генов, опреде- [c.262]

    Генетическое скринирование популяции осуществляется с целью определения носителей генов тяжелых наследственных заболеваний. Классическим примером является программа скрининга, направленная на выявление новорожденных младенцев, страдающих фенилкетонурией (ФКУ) - тяжелейшим наследственным заболеванием, при котором прежде всего поражаются головной и спинной мозг. Своевременная диагностика генетического дефекта и последующее применение специальной диеты, исключающей фенилаланин, в сочетании с пси- [c.247]

    В 1902 г., вскоре после вторичного открытия законов Менделя, два генетика — А. Сэттон и Т. Бовери независимо друг от друга обнаружили удивительное сходство между поведением хромосом во время образования половых клеток и оплодотворения и наследованием признаков организма. Они высказали ряд предположений, согласно которым 1) хромосомы являются носителями наследственных факторов (термин ген бьш введен в обиход только в 1909 г. В.Иогансеном), 2) каждая пара факторов локализована в паре гомологичных хромосом, 3) каждая хромосома несет только по одному специфическому, уникальному фактору, 4) каждая хромосома содержит множество различающихся факторов, поскольку число признаков у любого организма гораздо больще числа его хромосом. Эти идеи заложили основу хромосомной теории наследственности . [c.49]

    Диагностика специфических наследственных заболеваний человека на генетическом уровне дает ответ на вопрос, входят ли обследуемые индивидуумы или их потомки в группу повышенного генетического риска. ДНК-анализ можно использовать для выявления носителей генов наследственных заболеваний, а также для пренатальной и пресимптоматической диагностики серьезных генетических нарушений. [c.195]

    Еще два наследственных заболевания, точная генетическая основа которых нам не известна, но для которых недавно была установлена взаимосвязь между особым типом полиморфизма ДНК и наличием больного гена —это мышечная дистрофия Дюшена и хорея Хантингтона. Последнее заболевание неизлечимо, наследуется по аутосомному доминантному механизму и выражается в прогрессирующем слабоумии и параличе, наступающем на тридцатом — сороковом году жизни. К сожалению, до недавнего времени мы не располагали методом выявления носителей такого гена. Поскольку здесь налицо определенная связь с маркерами ДНК, ее следует иметь в виду при генетическом консультировании, и возможно, что со временем на этой основе будут идентифицированы и сам ген хореи Хантингтона, и соответствующий продукт. [c.345]

    Репликация ДНК. У бактерий, так же как и у высших организмов, носителем генетической информации служит ДНК. Рассматривая структуру клетки, мы уже говорили о том, что бактериальная ДНК представляет собой двойную спираль, замкнутую в кольцо. Сразу же возникает вопрос как сохраняется наследственная информация при росте и размножении клеток Перед их делением происходит идентичная редупликация, или репликация, генов. Этот процесс можно удовлетворительно объяснить, исходя из модели структуры ДНК, предложенной Уотсоном и Криком, и из механизма удвоения ДНК, теперь уже известного (см. с. 36). Две цепи двойной спирали ДНК комплементарны друг другу. На каждой цепи из структурных элементов ДНК-дезоксирибонукле-озидтрифосфатов-синтезируется новая цепь при этом с каждым из оснований спаривается комплементарное ему основание, так что каждая из двух новых цепей опять-таки будет комплементарна родительской цепи. Обе новые двойные спирали состоят из одной родительской и одной вновь синтезированной цепи. Эта точная репликация ДНК гарантирует сохранение генетической информации. [c.435]


Смотреть страницы где упоминается термин Гены-носители наследственности: [c.390]    [c.79]    [c.170]    [c.435]    [c.233]    [c.13]    [c.253]    [c.259]    [c.112]    [c.22]    [c.6]    [c.200]    [c.558]    [c.395]   
Смотреть главы в:

Современная генетика Т.1 -> Гены-носители наследственности




ПОИСК





Смотрите так же термины и статьи:

Наследственность



© 2024 chem21.info Реклама на сайте