Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ИДЕНТИФИКАЦИЯ ПОЛИМЕРНЫХ КОМПОЗИЦИИ

    ИДЕНТИФИКАЦИЯ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ [c.5]

    Однако традиционно масс-спектрометрическому анализу подвергают продукты разложения полимеров (чаще всего продукты пиролиза) [43]. Поскольку состав продуктов пиролиза в определенных условиях достаточно специфичен, это позволяет применить масс -спектрометрию для идентификации полимеров и даже для анализа состава полимерных композиций например, масс-спектрометрический метод с успехом использовался для изучения состава сополимеров этилена и пропилена. [c.144]


    С 1964 г. гель-проникающую хроматографию (ГПХ) стали щироко применять в химии и технологии полимеров как быстрый и надежный метод определения молекулярных масс и молекулярно-массовых распределений (ММР) пластмасс, смол, каучуков и т. п. В настоящее время этот метод практически полностью вытеснил ранее существовавшие трудоемкие методы фракционирования полимеров. В промышленности ГПХ используют для идентификации и анализа новых полимеров, а также для контроля за качеством продукции [1]. При помощи метода ГПХ можно не только быстро установить несоответствие полимера техническим требованиям, но даже иногда указать причину нарушения технологии, поскольку кривая молекулярномассового распределения непосредственно отражает условия получения полимера. Это относится как к процессам полимеризации и поликонденсации, так и к процессам приготовления полимерных композиций на основе заранее синтезированных компонентов [2]. В таких случаях нет необходимости иметь хроматограмму в виде истинной кривой распределения, поскольку прямое сопоставление графиков, полученных методом ГПХ в стандартных условиях, дает достаточную информацию о соответствии полимера техническим требованиям. Хроматограммы можно получать за 3—4 ч, причем очередной образец полимера можно вводить в колонку, не дожидаясь выхода предыдущего. Как метод разделения веществ по молекулярной массе ГПХ применяют для определения концентрации и типа низкомолекулярных добавок к полимеру, например органических растворителей, антиоксидантов, пластификаторов и пр. В настоящее время выпускают различные хроматографические материалы, предназначенные для разделения методом ГПХ низкомолекулярных веществ, а сам метод успешно используют для анализа смазочных материалов, полигликолей, асфальтенов и ряда других олигомерных соединений. [c.280]

    Наряду с качественным анализом полимерной части проводится идентификация пластификатора и д)). ингредиентов, входящих в состав полимерной композиции, по обычным методикам анализа органич. соединений. [c.67]

    Другие добавки органического и неорганического происхождения при наличии их в полимерной композиции до 5 % не оказывают существенного влияния на идентификацию полимерной матрицы методами ИК- и ЯМР-спектроскопии, но их возможное влияние на спектры необходимо учитывать. [c.63]

    IV. 1. Идентификация 122 IV. 1.1. Летучие органические соединения 123 IV. 1.2. Летучие соединения в нелетучих образцах 127 IV. 1.3. Синтетические полимеры 134 IV.1.3.1. Гомополимеры 135 IV. 1.3.2. Сополимеры 146 IV. 1.3.3. Смеси полимеров 152 IV. 1.3.4. Полимерные примеси и добавки 156 IV.1.3.5. Анализ гетерогенных систем 161 IV. 1.3.5.1. Гетерогенные включения 161 IV.1.3.5.2. Гетерогенные смеси 161 IV.2. Количественный анализ 165 IV.2.1. Анализ двухкомпонентных систем (смеси, сополимеры) 169 IV.2.1.1. Определение состава смесей бутилкаучука (БК) с этиленпропиленовым сополимером (СКЭП или СКЭПТ) 169 IV.2.1.2. Определение состава бутадиенстирольных сополимеров 171 IV.2.1.3. Определение состава нитрильных каучуков 172 IV.2.1.4. Определение непредельности бутилкаучуков 172 IV.22. Определение состава многокомпонентных полимерных композиций 175 IV.2.2.1. Определение состава смесей каучуков СКИ с СКС 175 IV.2.2.2. Определение состава многокомпонентных полимерных смесей при одновременном присутствии в образце полимеров, содержащих одинаковые мономерные звенья 177 IV.3. Оценка микроструктуры 179 IV.3.I. Количественное определение структурных единиц 185 IV.3.2. Оценка разветвленности макромолекул 189 IV.3.3. Оценка характера чередования мономерных звеньев 191 IV.3.4. Изучение построения макромолекул 196 [c.254]


    По электрическим свойствам полимеры подразделяются на диэлектрики, полупроводники и электропроводящие материалы. К диэлектрикам относятся полимеры, молекулы которых не содержат легко диссоциирующих на ионы групп и сопряженных двойных связей вдоль макроцепи. Электрическая проводимость у этих полимеров при комнатной температуре не превышает 10 См/м. Для полимерных полупроводников (7=10 ч-Ч-10 См/м) характерно наличие сопряженных двойных связей или комплексов с переносом заряда. Электропроводящие полимерные материалы обычно являются композициями полимер— проводящий наполнитель. Перенос электричества в полимерных материалах может осуществляться электронами, ионами или моль-ионами. Идентификация типа носителей заряда и механизма их перемещения — весьма существенный вопрос для практических применений полимеров. Поэтому ниже рассматриваются основные представления о моделях переноса электрического заряда электронами и ионами. [c.40]

    Для идентификации полимеров и полимерной основы композиций используются различные методы простые, основанные на физико-химических и физико-механических свойствах полимеров, химические, инструментальные. Наибольшее распространение из инструментальных методов получили ИК-спектроскопия, пиролитическая газовая хроматография, ЯМР-спектроскопия. Применяются газовая, тонкослойная, гель-проникающая хроматография, хромато-масс-спектроскопия, пиролитическая масс-спектроскопия, термический анализ, а также разнообразные комбинации этих и других методов. Инструментальные методы позволяют значительно сократить время анализа и снизить предел обнаружения ряда анализируемых компонентов [1—6]. [c.5]

    См/м) характерно наличие сопряженных двойных связей или комплексов с переносом заряда. Электропроводящие полимерные материалы обычно являются композициями полимер — проводящий наполнитель. Перенос электричества в полимерных материалах может осуществляться электронами, ионами или моль-ионами. Идентификация типа носителей заряда и механизма их перемещения — весьма существенный вопрос для практических применений полимеров. Поэтому ниже рассматриваются основные представления о моделях переноса электрического заряда электронами и ионами. [c.40]

    Несмотря на широкое внедрение инструментальных методов в практику идентификации полимеров, приходится признать, что не существует таких методов, которые можно гарантированно применять для анализа полимерных композиций, содержащих иногда по массе больше наполнителей и добавок, чем полимерной основы, без предварительного их отделения. Препарирование исследуемых образцов, отделение добавок и наполнителей методами экстракции, центрифугирования, препаративной и жидкостной хроматографии должно предшествовать как предварительной идентификации полимерной основы, так и последующей ее детальной идентификации инструментальными методами, если полимерная композиция является высоконапол-ненной. Проблема идентификации полимерных композиций весьма сложна, поскольку постоянно не только разрабатываются принципиально новые полимеры, ио различными способами изменяются физико-химические свойства существующих полимеров, расширяется их марочный ассортимент. Поэтому методы, предложенные для отделения определенного типа полимера от добавок и наполнителей, могут оказаться неприемлемыми для его модификаций. Методов препарирования и идентификации [c.56]

    Первоначальной операцией в ходе идентификации добавок является выделение их из полимерной композиции. Для этой цели чаще всего применяют экстракцию, подбирая экстрагент таким образом, чтобы полимер в нем набухал, а не растворялся полностью. Возможен и другой путь выделения добавок — растворение полимера с последующим его высаждением осади-телем и отделением от оставшихся в растворе добавок (см. табл. 1.4). [c.59]

    Некоторые полимеры при пиролизе не образуют характеристических соединений, преобладающих по количественному содержанию (полиэтилен и этиленпропиленовые сополимеры, полиуретаны на основе простых эфиров, полисилоксаны). Однако в продуктах пиролиза большинства полимеров, в том числе и каучуков общего назначения, выявлены индивидуальные соединения, позволяющие осуществлять их идентификацию как в товарных полимерах, так и в материалах сложного состава, содержащих наряду с полимерами другие органические и неорганические компоненты (в резиновых смесях, найозтенных и ненаполненных вулканизатах, клеевых композициях, полимерных покрытиях и пленках, синтетических волокнах и т.п.). Использование индивидуальных характеристических продуктов пиро- [c.72]


Смотреть страницы где упоминается термин ИДЕНТИФИКАЦИЯ ПОЛИМЕРНЫХ КОМПОЗИЦИИ: [c.74]    [c.233]   
Смотреть главы в:

Анализ полимеризационных пластмасс -> ИДЕНТИФИКАЦИЯ ПОЛИМЕРНЫХ КОМПОЗИЦИИ




ПОИСК





Смотрите так же термины и статьи:

Композиция



© 2025 chem21.info Реклама на сайте