Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрическая дуга и искра

    Недавно получены интересные результаты при термическом разложении жидких углеводородов при помощи электрической дуги. В этих процессах, которые находятся пока в стадии эксперимента, электрические искры очень короткой длины и продолжительности (10 сек) проскакивают между гранулами угля, находящимися в виде суспензии в жидкой нефтяной фракции (керосин, газойль или нефть, в которую погружены также графитные электроды). Применяется трехфазный ток напряжением от 200 тыс. в и выше. [c.111]


    Температура жидкости повышается до 120 °С, но между гранулами угля, находящимися в непрерывном движении, достигается температура до 1500 °С благодаря большому числу маленьких электрических дуг(искр), возникающих между ними или между ними и электродами. [c.111]

    Для выполнения спектрального анализа пробу вещества в виде порошка или раствора вводят в источник спектра (высокотемпературное газовое пламя, электрическая дуга, искра), где вещество превращается в пары и часто разлагается на отдельные атомы. [c.182]

    Весьма удобен для обнаружения элементов атомный эмиссионный спектральный анализ. Принцип метода основан на том, что атомам каждого элемента присущ определенный и характерный для данного элемента набор энергетических уровней внешних электронов. При температуре электрической дуги или искры электронам сообщается энергия и они переходят на более высокие энергетические уровни. Возвращение на нижележащие уровни связано с испусканием кванта света (фотона), энергия и длина волны >1 которого зависят от разности энергий уровней — 1  [c.13]

    Основными источниками света являются электрические дуги, искра, высокочастотный разряд, разряд в полом катоде, плазмотроны  [c.97]

    Для возникновения загорания и взрыва помимо горючей и взрывоопасной среды, как указывалось выше, необходим источник (импульс) воспламенения. Источниками воспламенения горючих газов и жидкостей при получении аммиака могут явиться открытое пламя, электрическая дуга и пламя горелок при электро- и газовой сварке, искры, вызываемые электрическим токо.ч и образующиеся при ударе и трении. Кроме того, пожары и взрывы могут возникать от статического электричества, первичных п вторичных проявлений молнии. [c.28]

    Электрооборудование повышенной надежности против взрыва — электрооборудование, в котором предусмотрены средства и меры, затрудняющие возникновение опасных искр, электрических дуг и нагрева, а также обеспечивающие взрывозащиту электрооборудования только в режиме его нормальной работы. [c.448]

    Источниками излучения могут служить пламя, электрическая дуга, искра, импульсный пли электровакуумный раз--ряд. Дуговой разряд дает температуру 5000—7000 С, при которой в возбужденное состояние переходят атомы боль- [c.242]

    Эмиссионный пламенно-фотометрический анализ основан на измерении интенсивности излучения атомов, возбужденных в пламени, электрической дуге, искре. [c.372]


    Источниками возбуждения могут служить пламя, электрическая дуга, искра, импульсный или электровакуумный разряд. Дуговой разряд дает температуру 5000—7000°С, при которой в возбужденное состояние переходят атомы большинства элементов. Б высоковольтной искре с температурой 7000—15 000°С возбуждаются атомы элементов с высоким потенциалом возбуждения. Импульсный и электровакуумные разряды используют для возбуждения инертных газов. [c.179]

    Для анализа газовых смесей пробу отбирают в специальные разрядные трубки. В газе создают электрический разряд. При этом возникают условия, благоприятные для возбуждения атомов определяемых элементов достаточно высокие концентрация и температура электронов. Для анализа твердых, жидких, порошкообразных материалов пробу вносят в такой источник света, в котором ее можно испарить, а атомы и молекулы парообразного вещества возбудить к свечению для этого применяют электрическую дугу, искру или другой подходящий электрический разряд или горячие пламена. В пламя жидкую пробу впрыскивают в виде аэрозоля, а порощок вдувают или же вносят в виде прессованных таблеток. В электрический разряд пробу вводят обычно одним из следующих способов включают ее в качестве электрода, наносят на поверхность электрода, вносят ее в углубление электрода из другого материала или же вводят непосредственно в зону разряда. Проба испаряется непосредственно с электродов или же в самом разряде. Атомы и молекулы, поступившие в меж-электродное пространство, возбуждаются к свечению в зоне разряда. [c.173]

    Источниками возбуждения спектров могут служить пламя, электрическая дуга, искра, импульсный и электровакуумный разряд. [c.127]

    Принцип метода. Анализируемое вещество (сплав, порошок или раствор) подвергают частичному испарению в электрической дуге, искре или в пламени горелки. Испускаемое при этом излучение разлагается с помощью призмы или дифракционной решетки. Получается спектр, линии которого фотографируют (спектрография) или измеряют их интенсивность фотоэлектрическим элементом (прямая фотометрия). [c.581]

    Точность метода. Точность метода определяется действием следующих факторов постоянством источника возбуждения (электрической дуги, искры, пламени горелки), величиной ошибки фотометрического измерения, а в случае спектрографии — гомогенностью фотографической эмульсии. Кроме того, очень большое значение имеет отбор пробы для анализа. Если анализируют твердое вещество, то лишь очень незначительная часть его подвергается исследованию и очень важно, чтобы эта часть правильно отражала средний состав анализируемой пробы. Поскольку определение сводится к сравнению со стандартным образцом, состав которого часто определяют предварительно химическими методами анализа, точность спектрографического определения зависит в таких случаях от точности этих химических методов анализа. [c.581]

    В основе эмиссионного спектрального анализа лежит изучение строения света, разложенного по длинам волн в виде спектра, который излучается или поглощается возбужденными атомами и молекулами анализируемого вещества. Атомы и молекулы могут возбуждаться пламенем горелки, электрической дугой или искрой. Высокая температура (1000°С) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионный метод, как правило, является атомным анализом. [c.43]

    Принцип метода. Анализируемое вещество (сплав, порошок или раствор) подвергают частичному испарению в электрической дуге, искре или в пламени горелки. Испускаемое при этом излучение разлагается с помощью призмы или дифракционной решетки. Получается спектр, линии [c.473]

    Качественный спектральный анализ. При качественном анализе достаточно поместить между электродами небольшую навеску (0,1—1 мг), возбудить ее электрической дугой или искрой и сфотографировать спектр. Затем необходимо определить, к излучению какого элемента относится та или иная линия в спектре анализируемой пробы. Для этого определяют длину волны линии по ее положению в спектре, а затем с помощью таблиц устанавливают ее принадлежность к тому или иному элементу. При известном основном составе пробы под спектром анализируемого вещества снимают спектр чистого образца, не содержащего примесей. Для расшифровки спектров применяют таблицы спектральных линий и атласы, которые бывают двух типов. Первый содержит комплекты планшетов с фотографиями дуговых и искровых спектров железа, на которых указаны длины волн всех его спектральных линий, а второй имеет изображение спектра железа рядом со шкалой длин волн в ангстремах, положением наиболее характерных линий элементов периодической системы и длинами их волн и интенсивностей. [c.44]

    Для складских операций применяют механизмы, снабженные электрическими машинами, токоведущими проводами, контактными соединениями, аппаратами, приборами и т. д. В аварийных режимах в электрооборудовании появляются электрические дуги, искры, нагреваются токоведущие провода и контактные соединения, которые становятся источниками зажигания. При коротком замыкании токоведущих проводов образуется электрическая дуга в месте контакта и локально разогревает провода до высокой температуры, при которой воспламеняется изоляция или происходит пережог проводов с образованием расплавленных частичек металла. Горючая среда в этих условиях воспламеняется. [c.65]


    Для защиты сгораемых конструкций и предметов от действия тепла и искр электрической дуги рабочие места электросварщиков, находящиеся как в помещениях, так и на открытом воздухе, должны ограждаться постоянными или переносными ограждениями (защитные экраны), а сгораемые полы защищаться металлическими аистами. Переносные ограждения должны изготовляться из листовой стали. [c.203]

    Импульсы воспламенения и борьба с ними. Импульсами воспламенения, приводящими к горению и взрыву веществ и материалов, могут быть открытое пламя несгоревшие частицы топлива раскаленные или нагретые поверхности с температурой выше температуры самовоспламенения веществ, которые могут иметь контакт с ними горючие смеси, температура которых повысилась при адиабатическом (т. е. без подвода и отвода тепла) сжатии вследствие химических и других процессов до температуры самовоспламенения жидкие и твердые вещества, подвергшиеся самонагреванию, которое привело к их самовозгоранию искры удара и трения искры, вызываемые электрическим током электрическая дуга (например, при электросварке) статическое электричество первичные и вторичные проявления атмосферного электричества и др. Механизм воспламенения горючего вещества (горючей смеси) во многом определяется его химической природой и агрегатным состоянием, характером поджигающего импульса и другими факторами. [c.201]

    В практике атомно-эмиссионного спектрального анализа в качестве источников возбуждения спектров применяют пламя, электрические дуги постоянного и переменного тока, низко- и высоковольтную конденсированную искру, низковольтный импульсный разряд, различные формы тлеющего газового разряда я др. В последние годы начинают широко использовать также различные виды высокочастотных разрядов — источник индуктивно-связанной высокочастотной плазмы (ИСП), микроволновой разряд и др. [c.58]

    Общеизвестно большое значение эмиссионного спектрального анализа, особенно для определения малых количеств загрязнений и добавок в сплавах, примесей в минералах. От высокой температуры искры или электрической дуги возбуждается спектр испускания металлов — эмиссионный спектр. Излучение разлагается специальными приборами — спектрографами и фотографируется. Для наблюдения спектров в увеличенном виде применяют спектро-проекторы (рис. 1). [c.19]

    Каковы достоинства и недостатки следующих средств возбуждения а) пламени б) электрической дуги в) конденсированной искры  [c.125]

    Электрооборудование взрывобезопасное при любых количествах повреждений — это такое электрооборудование, в котором предусмотрены меры защиты, от действия искр или электрических дуг как при нормальной работе, так и при неограниченном числе повреждений любых элементов, за исключением защитных элементов, выполненных в соответствии с гл. 6.2.  [c.448]

    Эмиссионный спектральный анализ — физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или излучения), возникающих под влиянием сильных источников возбуждений (электрической дуги, высоковольтной искры) этот метод дает возможность определять элементный состав вещества, т. е. судить о том, какие химические элементы входят в состав данного вещества. [c.27]

    Исследуемые пробы и электроды закрепляются в штативах разнообразной конструкции. Особенно удобен штатив, ШТ-9, который предназначен для работы с дугой постоянного и переменного тока и с электрической высоковольтной искрой. Штатив состоит из плотно закрываемого металлического кожуха, внутри которого расположены держатели электродов. Лампа для подсветки электродов позволяет видеть расположение электродов по их изображению на промежуточной диафрагме осветительной системы. [c.233]

    Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы. [c.7]

    Различные типы газового разряда дуга, искра, импульсный разряд и т. д. — осуществляются путем подачи на электроды соответствующего напряжения. Электрические схемы преобразуют напряжение сети в напряжение определенной величины и формы и обеспечивают нужные параметры разряда. Наша промышленность выпускает несколько типов генераторов, которые предназначены для осуществления [c.66]

    Методы введения, металлических монолитных проб. Металлы и сплавы обычно поступают на анализ в виде монолитных проб. Все они имеют хорошую электропроводность и их вводят в источник света в виде одного из электродов. В дуге, искре и других электрических источниках света материал электродов энергично испаряется и поступает в разряд. [c.245]

    Взрывобезопасное электрооборудование — это электрооборудование, в котором предусмотрены меры защиты от взрыва окружающей взрывоопасной газо-, паро-, пылевоздушной смеси в результате действия искр, электрических дуг или нагретых поверхностей как при нормальной работе электрооборудования, так и при его вероятных повреждениях. [c.448]

    Если же к поверхности тела, имеющего электрический заряд, близко поднести (но ие прикоснуться) ироводник, то заряд может перейти на проводник, образуя маленькую электрическую дугу (искру). Чем больше заряд статического электричества, тем больше размеры искры, тем выше ее температура и тем больше расстояние до проводника, через которое может проскочить искра. [c.133]

    Для предохранения хлопчатобумажной спецодежды от воспламенения при соприкосновении с электрической дугой, искрами, раскаленными предметами рекомендуется спецодежду пропитывать составами, обладающими антипиренными свойствами. [c.254]

    Чтобы предупредить образование электрических искр и других импульсов воспламенения, в6 взрывоопасных помещениях устанавливают взрывозащищенное электрооборудование. Сюда относятся взрывонепроницаемое оборудование с корпусом, способным выдержать давление, если внутри него произошел взрыв взрывоопасной смеси оборудование повышенной надежности против взрыва, в котором- исключается возникновение искрения, электрической дуги или опасных температур оборудование с масляным наполнением, искрящие и неискрящие части которого погружены в масло искробезопаеное оборудование, искры которого не способны воспламенять данную взрывоопасную среду, ввиду их малой энергии, и др. Действуют строгие нормативы, определяющие, какое именно оборудование должно устанавливаться в зависимости от степени взрывоопасности помещения. [c.42]

    С помощью данного метода определяют наличие химических элементов, простых ионов, радикалов (например, СЫ), простейших молекул (чаще всего — двух- или -фехатомных), регистрируя их спектры испускания (эмиссию). Свечение (испускание света) вещества возбуждают в пламени горелки, в электрической дуге или искре, в газоразрядной трубке (электрический разряд) и т. д. При этом получают линейчатые, т. е. состоящие из линий (атомы), или (реже) полосатые, т. е. состоящие из полос, образующихся при наложении многих линий (молекулы, ионы и радикалы, состоящие из нескольких атомов), спектры испускания, которые идентифицируют (отождествляк>т) с помощью таблиц, атласов спектральных линий или эталонов. [c.518]

    Тепловыми источниками зажигания могут быть открытое пламя, электрическая искра или дуга, искры, образующиеся при треиии или ударе, несгоревщие частицы топлива, повышение температуры горючей смеси, образовавшееся при химических процессах, соприкосновение с нагретыми поверхностями и др. Источником горения могут также явиться химические и микробиологические процессы, происходящие в веществе при обычных температурах с выделепием тепла. Химический импульс, вызывающий нагревание вещества, оказывает действие только тогда, когда это вещество находится в контакте с горючим (например, воспламенение древесных опилок при действии на них крепкой азотной кислоты, загорание глицерина, этилеигликоля при взаимодействии с марганцевокислым калием и др.). Ири микробиологических процессах зажигание происходит только в том случае, если горючее вещество служит питательной средой для жизнедеятельности микроорганизмов (иаиример, самовозгорание фрезерного торфа), [c.146]

    Искры, образующиеся при разрядах статического электричества, имеют незначительную силу тока (тысячные доли миллиампера), но уже при сравнительно невысокой разности потенциалов способны воспламенить большую часть горючих газон и пылей. Электрическая дуга воспламеняет горючие смеси пр.штически во всех случаях. Однако при напряжении до 1,5 В [c.146]

    R таблице приведены ориентировочные данные о наименьших весовых количествах элементов, которые могут быть обнаружены с помощью эмиссионного спектрального анализа а электрических источниках света (дуге, искре, разрядной трубк з). Приведенные значения получены для разных элементов различными техническими приемами, обеспечивающими достижение максимальной чуйствительности. Данные для металлов относятся, как правило, к анализу микрообразцов, содержащих только определяемые элементы, дан ные для газов — к анализу газовых смесей. [c.720]

    В эмиссионном спектральном анализе исследуемого вещества пробу (анализируемый объект) испаряют и возбуждают свечение паров посредством пламени электрической дуги, высоковольтной искры или другим источииком возбуждения. Атомы каждого элемента в возбужденном состоянии испускают волны только определенной длины, так называемое характеристическое излучение. Благодаря этому оказывается возможным проводить качественный эмиссионный спектральный анализ не только простых, но и сложных веществ и их смесей. [c.224]

    При энергетическом возбуждении атома в электрической дуге, в искре, в пламени его электронная энергия возрастает и он переходит из основного (невозбужденного) состояния в другие (возбужденные) состояния. Время жизни возбужденного состояния невелико ( 10 с). Атом, теряя энергию возбуждения в виде излучения (эмиссии), возвращается либо в исходное основное состояние (резонансное излучение), либо в какое-то другое состояние, лежащее по энергии выше основного состояния. Каждой такой потере энергии возбуждения атома соответствует линия (резонансная или нерезонансная) в спектре его излучения при определенной длине волны. Так как возбужденных состояний у атома может быть очень много, то в спектрах исхтускания атомов может наблюдаться много линий (до нескольких сотен и даже тысяч). Каждый атом имеет [c.518]


Смотреть страницы где упоминается термин Электрическая дуга и искра: [c.21]    [c.347]    [c.507]    [c.11]    [c.450]   
Смотреть главы в:

Введение в люминесцентный анализ неорганических веществ  -> Электрическая дуга и искра




ПОИСК





Смотрите так же термины и статьи:

Искра

Электрическая дуга



© 2025 chem21.info Реклама на сайте