Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пылеосадительные камеры и циклоны

Рис. VI-24. Многокамерные прямоточные циклоны с пропусканием пыли в пылеосадительные камеры и последующие циклоны Рис. VI-24. Многокамерные <a href="/info/535493">прямоточные циклоны</a> с пропусканием пыли в <a href="/info/94159">пылеосадительные камеры</a> и последующие циклоны

Рис. У1-26. Многокамерный прямоточный циклон с пылеосадительной камерой (первичный пылесборник) и параллельными циклонами Рис. У1-26. Многокамерный <a href="/info/535493">прямоточный циклон</a> с <a href="/info/94159">пылеосадительной камерой</a> (первичный <a href="/info/1022082">пылесборник</a>) и параллельными циклонами
    Характеристика работ. Ведение технологического процесса очистки газов от взвешенных в них частиц под действием силы тяжести, центробежной силы. Обслуживание аппаратов различной конструкции (отстойные камеры, отстойные газоходы, пылеосадительные камеры, циклоны, рукавные фильтры, скрубберы и др.) для очистки газа или улавливания готового продукта. Непрерывная подача газов в аппараты, осаждение взвешенных частиц, обеспечение заданной скорости газового потока, скорости фильтрации, заданной степени очистки газа, давления, температурного режима и других показателей ведения процесса. Продувка и механическое встряхивание аппаратов. Улавливание пыли. Выгрузка осадка. Удаление газа. Обслуживание оборудования производственного участка. Устранение неисправностей в работе оборудования. Отбор проб, вьшолнение предусмотренных инструкцией анализов. Подготовка оборудования к ремонту, прием из ремонта. [c.72]

    Пылеосадительные камеры Циклоны [c.258]

    Инерционные пылеуловители. Поток очищаемого газа со скоростью 10—15 м/с вводится в аппарат (рис. ХХ-3). Внутри аппарата установлены лопатки (жалюзи), разделяющие рабочий объем аппарата на две части камеру запыленного и камеру очищенного газа. При входе в каналы между жалюзи газ резко изменяет направление движения и одновременно уменьшается его скорость. По инерции частицы движутся вдоль оси аппарата и, ударяясь о жалюзи, отбрасываются в сторону, а очищенный газ проходит сквозь жалюзийную решетку и выводится из аппарата. Остальная часть газа (около 10%), содержащая основную массу пыли, выводится через другой штуцер и обычно подвергается дополнительной очистке в циклонах. Аппараты этого типа более компактны, чем пылеосадительные камеры, однако они пригодны только для грубой очистки. [c.350]

    Улавливание пыли в промышленности обычно осуществляется с помощью пылеосадительных камер, циклонов, электрофильтров, фильтров из различных тканей и пенных аппаратов (мокрая очистка). Вредные газы обычно поглощаются в аппаратах с насадкой (скрубберах) путем их абсорбции (объемного поглощения) различными растворами, а также методом адсорбции (поглощения поверхностью адсорбента) на пористых поглотителях (древесный активированный уголь, силикагель и др.). Остатки вредных газов рассеиваются в атмосфере путем их выбрасывания через высокие трубы (высотой до 100 м и более). [c.60]


    Пылеосадительные камеры Циклоны одиночные и групповые - батарейные Промыватели центробежные - ударные типа [c.164]

    Для улавливания сажи применяют пылеосадительные камеры, циклоны, рукавные тканевые фильтры, электрофильтры и аппараты мокрой очистки газов — скрубберы, пенные уловители, турбулентные промы-ватели. Часто применяют комбинированные способы улавливания сажи, например улавливание сажи сначала в электрофильтре, а затем в циклонах. Те частицы сажи, которые не задержались в электрофильтре, но успели образовать крупные агрегаты, поступают в циклон и там оседают. [c.202]

    Зная время пребывания газа в циклоне (при условии, что время прохождения газа через объем пылеосадительной камеры циклона достаточно для осаждения самых мелких шарообразных частиц пыли), можно определить рабочий объем циклона  [c.147]

    Дымовые газы температурой 800-1000 С по газоходу поступают в скруббер, где происходит их охлаждение водой до температуры 300-400 С. Вода распыливается двумя ярусами водяных форсунок. Охлажденные дымовые газы поступают в батарейные циклоны для очистки от пыли. Дпя предотвращения перетока между отдельными элементами предусмотрена рециркуляция части газового потока. Для этого часть газового потока (8%) отбирается дымососом из пылеосадительной камеры циклонов, очищается в циклонах и, охлаждаясь в скруббере, направляется обратно на вход в циклоны. [c.40]

    Уменьшение запыленности осуществляют в механических пылеуловителях инерционного или центробежного типа (пылеосадительные камеры, циклоны и т. п.). [c.172]

    Расчет пылеуловительного устройства. Для очистки сушильного агента от пыли можно применять пылеосадительные камеры, циклоны, электрофильтры, газовые фильтры и гидравлические пылеосадители. Наибольшее применение получили циклоны, так как они улавливают твердые частицы с размерами 100—3 мкм и имеют хорошую степень очистки (85— 45%). [c.164]

    Методы выделения твердых частиц из газового потока разделяют на сухие и мокрые. При сухой очистке используют пылеосадительные камеры, циклоны и рукавные фильтры. Для мокрой Очищенный газ очистки применяют мокрые скрубберы и пенные газопромыватели. [c.64]

    Для очистки газов от пыли пользуются механическими и электрическими методами. Применяются, пылеосадительные камеры, циклон-аппараты, электрофильтры. [c.394]

    В циклонах достигается значительно лучшая степень очистки газов, чем в пылеосадительных камерах. [c.331]

    Дымовые газы, образующиеся при сжигании топлива в горячей головке печи, а также в самой печи, в результате сгорания летучих веществ, поступают из холодной головки печи в пылеосадительную камеру. За счет регулирования подачи воздуха температура в пылеосадительной камере поддерживается в интервале 800-1050 °С. При этой температуре дожигаются оксид углерода и витающая коксовая пыль. Затем дымовые газы направляются в котел-утилизатор (с целью получения водяного пара), проходят доочистку в циклоне и выводятся в дымовую трубу. Уловленный в пыле-осадительной камере и циклоне кокс объединяется [c.77]

    Осадители, как и классификаторы, по принципу работы можно разделить па гравитационно-инерционные и гравитационно-центробежные. К числу первых относятся сгустители для сусиензий, пылеосадительные камеры и электроосадители ко вторым — циклоны. [c.318]

    Центробежная сила, действующая на. частицы во вращающемся газовом потоке, намного больше, чем гравитационная, поэтому циклоны являются эффективными для удаления частиц гораздо меньших размеров, чем в случае пылеосадительных камер, и при одинаковых объемах газов размеры циклонов значительно меньше. С другой стороны, перепад давления в циклонах больше, а расход энергии гораздо выше. [c.240]

    Циклоны отличаются от инерционных уловителей, описанных в главе У, тем, что в циклоне осуществляется многовитковое вращение потока. Пылеосадительные камеры и инерционные пылеуловители используются (за исключением редких случаев) для удаления крупной пыли — размером более 76 мкм, в то время как промышленные циклоны эффективны для улавливания частиц до [c.240]

    Если газовый поток содержит значительное количество крупнозернистых частиц, особенно очень твердых, стенки циклона могут пострадать от эрозии, поэтому перед циклоном желательно установить пылеосадительную камеру или инерционный пылеуловитель. [c.240]

    Прямоточные циклоны действуют как концентраторы пыли в них сконцентрированная пыль вместе с некоторым количеством газа отводится в периферийную область и направляется во вторичный сборник, тогда как чистый газ проходит в осевом направлении. Вторичным сборником может служить другой циклон обычного типа или пылеосадительная камера. [c.281]

    Скорость газового потока в пылеосадительных камерах нк более 0,2—1,5 м/с, гидравлическое сопротивление 50—150 Па, степень очистки не более 40—50%- Для более полного извлечения частиц из газов используются циклоны, где частицы отделяк1тся как под действием сил тяжести, так и под действием центроб( ЖНой силы. Скорость газового потока на входе в циклон 5—20 м/с, гидравлическое сопротивление 100—500 Па, степень очистки для частиц с диаметром 30—40 мкм — 98 % Ю мкм — 80 % 4—5 мкм — 60 %. [c.471]


    В несколько видоизмененном устройстве (рис. У1-2б, а) сконцентрированные тяжелые пылевые частицы оседают в гравитационной пылеосадительной камере, а более легкие фракции проходят над камерой к циклону. Очищенные в циклоне газы соединяются с газовым потоком, прошедшим через прямоточный циклон. Кривая фракционной эффективности этого устройства представлена на рис. У1-26, б. [c.282]

    Для очистки запыленных газов спольз) ют разль чныс аппараты Г315, 316] 1) сУхие, или механические пылеуловители, в которых взвешенные частицы отделяются от газов за счет сил тяжести, инерции или центробежных (пылеосадительные камеры, циклоны и т. п.) 2) мокрые пылеуловители, в которых частицы пыли отделяются от газов путем промывки их жидкостью (промывные камеры, полые форсуночные скрубберы, механические скрубберы, барботажные и пенные пылеуловители, скрубберы Дойля, трубы Вентури и т. п.) 3) фильтры-пылеуловители (волокнистые, тканевые, зернистые) 4) электрофильтры, в которых взвешенные частицы отделяются от газов под действием электрических сил. [c.263]

    Ускорение силы инерции может быть во много раз больше ускорения силы тяжести g, поэтому очистка от пыли в циклоне гораздо более эффективна, чем в пылеосадительной камере.. Силе инерции Р противодействует сила сопротивления среды, которая по закону Стокса равна [c.119]

    Схема установки сжигания нефтяного шлама в смеси с активным илом приведена на рис. 42. Предварительно подготовленную смесь сжигают в вертикальной цилиндрической печи, оборудованной тремя ротационными форсунками. Воздуходувкой на форсунки подают воздух. Рабочая температура в печи 900—1200 °С. Температура уходящих дымовых газов 650—-700 °С, для ее поддержания в печи предусмотрено водяное орошение дымовых газов через форсунки тонкого распыла. Дымовые газы поступают в пылеосадительную камеру, где частично улавливаются зола и иыль. Очищенные газы нодают в котел-утилизатор, где за счет тепла дымовых газов вырабатывается водяно пар. Отдав тепло, дымовые газы окончательно очищаются в батарейных циклонах, и через трубу их выбрасывают в атмосферу. Через специальное устройство в нижней части печи раз в смену выгружают золу. По мере иакоиления золу удаляют также из пылеосадительной камеры и циклонов в контейнеры, установленные на тележках. [c.117]

    Известно, что для обычного циклона к. п. д. уменьшается с уменьшением скорости лишь до известного предела, после которого снова начинает возрастать, достигая при и=0 (Рг=0) значения 100%. Очевидно, что только в этой области, не имеющей практического значения, критерий Рг оказывает существенное влияние на работу циклона. Критерий Фруда является основным определяющим критерием лишь для пылеосадительных камер нли других аппаратов, основанных на действии силы тяжести. [c.97]

    Пылеосадительные камеры и циклоны по капитальным и эксплуатационным затратам предпочтительнее других аппаратов, но они улавливают лишь крупные частицы. Поэтому самостоятельно их целесообразно применять на объектах малой мощности для очистки газов от крупной пыли. Чаще же аппараты этих типов используют в качестве первой ступени пылеулавливания для предварительной очистки газов перед электрофильтрами и рукавными фильтрами, перед вентиляторами для защиты лопастей от эрозии. [c.258]

    По крупности пыли различных стадий переработки на черновую медь могут быть разделены на грубозернистые и тонкодисперсные. К первым относятся материалы иэ пылеосадительных камер, циклонов, газоходов, ко вторым — улавливаемые при тонкой пылеочистке (рукавные фильтры и электрофильтры) или осаждаемые в удаленных участках газоходной системы. [c.123]

    Механические пылеуловители (пылеотстойные или пылеосадительные камеры, Инерционные пыле- и брызгоуловители, циклоны и мультциклоны). Аппараты этой группы применяются обычно для предварительной очистки газа. Пылеосадительные камеры улавливают частицы размером более 40—50 мкм, их эффективность не превышает 40—50%. Инерционные пылеуловители используют для улавливания пыли с размером частиц более 25—30 мкм. Циклоны позволяют улавливать пыль с размером частиц 10—100 мкм. [c.357]

    Сконцентрированная пыль поступает в пылеосадительную камеру, затем проходит через циклоны. После этого очищенный газ соединяется с газом, прошедшим через прямоточный циклон (см. рис. У1-24, а), эффективности которого пр-иведена на [c.282]

    Приведенные данные дают представление лишь о порядке соответствующих величин, которые могут изменяться в широких пределах в зависимости от состояния, состава и свойств поступающего на очистку запыленного газа. Как видно з таблицы, пылеосадительные камеры и центробежные пылеосадите-ли можно применять только для сравнительно грубой очистки газа. При этом следует отдавать предпочтение циклонам как [c.5]

    Современные теории циклонирования изложены во многих работах [13]. Общая схема процессов представляется в следующем виде. Запыленный газ входит в циклон через патрубок, расположенный тангенциально к цилиндрической пылеосадительной камере и движется спирально вниз по стенке конуса, а затем вверх, в выходную трубу (рис. 1.1). При этом считается, что диаметр восходящего по спирали потока (ядро вихря) примерно равен диаметру выхлопной трубы. На входе в циклон газовый поток в кольцевом пространстве между стенкой корпуса и выхлопной трубой движется с ускорением. Кинетическая энергия потока диссипиру-ется в процессе обмена количеств движения с обратными потоками, возникающими на фанице застойных зон. [c.9]

    Как видно из таблицы, пылеосадительные камеры и центробежные пьшеосадители можно применять только дая сравнительно грубой очистки газа. При этом следует отдавать предпочтение циклонам как более компактным аппаратам, обеспечивающим относительно высокую степень очистки. [c.3]

    Раскаленный кокс в специальных вагонах быстро (поскольку на воздухе он горит) транспортируется от коксовой батареи и зафу-жается в герметичную фор-камеру / (рис. 9.5), затем поступает в камеру тушения 2, в которой он снизу вверх продувается инертным газом. За счет постепенной выфузки снизу кокс плотным слоем движется сверху вниз противотоком к охлаждающему газу. В результате кокс охлаждается с 1000—1050 °С до 200—250 °С, а газ нафевается с 180—200 °С до 750—800 С. Через специальное отверстие 3 и пылеосадительную камеру 4 газы попадают в котел-ути-лизатор 5. В нем за счет охлаждения 1 т кокса получают примерно 0,5 т пара достаточно высоких параметров р = 3,9—4,0 МПа и / = 440—450 °С. После котла-утилизатора охлажденный газ еще раз очищают от пыли в циклоне 6 и вентилятором 7 вновь направляют в камеру тушения под специальный рассекатель для равномерного распределения по сечению камеры. [c.225]

    Сухие способы. Нанб. распространены уловители, в к-рых осаждение твердых илн жидких частиц происходит вследствие резкого изменения направления или скорости газового потока (циклоны, пылеосадительные камеры с цепными проволочными завесами, дымососы-пылеуловители, пылевые мешки). Среди этих аппаратов, применяемых, как правило, только для улавливания сравнительно крупных частиц (> 5 мкм), макс. эффективностью обладают циклоны. Взвешенные частицы отделяются в них от газа под действием центробежных сил, возникающих в результате спирально-поступат. движения газового потока вдоль ограничивающей пов-сти аппарата. При гидравлич. сопротивлении 0,5-1,5 кПа эффективность сепарации в циклонах частиц пыли размерами ок. 5 и ок, 20 мкм составляет соотв. 40-70 и 97-99%. [c.461]

    К аппаратам сухой инерционной очистки газов относятся пылеосадительные камеры и некоторые из простейших по конструкции пыле- и золоуловителей инеоцион-ного действия, жалюзийные аппараты, циклоны в одиночном и групповом исполнении, прямоточные циклоны, батарейные циклоны, ротационные пылеуловители, дымососы-пылеуловители [c.50]

    Среди аппаратов сухой инерционной очистки газов наибольшее распространение получили различные циклоны, имеющие относительно высокие значения эффективности улавливания в них золы или пыли при умеренных значениях газодинамического сопротивления аппаратов. Применение пылеосадительных камер и простейших по конструкции пылеулови е тей инерционного действия оправдано лишь при предварительном осаждении частиц, основная масса которых имеет размеры более 100 мкм [c.50]

    Эти сведения позволяют также сузить круг поиска средств очистки, исключив заведомо непригодные. Так, например, сильнослипающиеся пыли сложно обрабатывать в батарейных циклонах, а схватывающиеся - мокрыми способами. Пылеосадительные камеры непригодны для конденсационных аэрозолей, а электрофильтры - для взрывоопасных. Абсорбция неэффективна при низкой растворимости улавливаемых компонентов и неприменима, если они вступают в реакции с абсорбентом, выделяя вторичные загрязнители. Пламенное обезвреживание можно использовать для обработки лишь чисто органических загрязнителей, т.е. веществ, принадлежащих к классам соединений, молекулы которых не содержат никаких других элементов, кроме углерода, водорода и кислорода. Термокатализ не всегда применим и к таким соединениям. Практически нецелесообразно использовать термокаталитическое окисление для высоко- и полимолекулярных, вы-сококипящих, конденсированных и концентрированных зафязнителей. [c.85]


Смотреть страницы где упоминается термин Пылеосадительные камеры и циклоны: [c.206]    [c.183]    [c.76]    [c.283]    [c.283]    [c.288]    [c.532]   
Смотреть главы в:

Производство сажи Издание 2 -> Пылеосадительные камеры и циклоны




ПОИСК





Смотрите так же термины и статьи:

Циклон



© 2025 chem21.info Реклама на сайте