Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппарат обратный направляющий

    Фильтрат из аппаратов обратного осмоса сбрасывается в канализацию или возвращается в технологический процесс. Вторичный пар из выпарного аппарата 7 направляется для обогрева [c.194]

    Сырой рассол и так называемый обратный рассол, образующийся при растворении соли, которая выделяется в результате упаривания щелоков — растворов каустической соды, получаемых по диафрагменному методу электролиза, проходит подогреватели 5 и 5, щелевые расходомеры 2 и воздухоотделители 1 и поступает в осветлитель 4. Сюда же одновременно вводится раствор соды из напорного бака 6 через фильтр 7 и ротаметр 10. Осветленный рассол из верхней части аппарата 4 направляется в насадочный фильтр (на рисунке не показан) и далее в смеситель 9, где нейтрализуется соляной кислотой, поступающей из напорного бака 8. Нейтрализованный рассол отводится в приемный баК. [c.60]


    Направляющий аппарат 1 представляет собой кольцо, охватывающее с небольшим зазором рабочее колесо и состоящее из двух дисков с лопатками, отогнутыми в сторону, обратную направле-270 [c.270]

    В дальнейшем процесс десорбции ведется за счет повышения температуры раствора. С этой целью раствор из аппарата 9 направляется в аппарат //, где в результате подогрева пиро-газом и обратным потоком метанола температура его поднимается до —20 °С. [c.157]

    При пуске теплообменников жесткого типа, как правило, сначала направляют среду в межтрубное пространство, так как корпус и трубы имеют одинаковую температуру (температурные напряжения отсутствуют), а затем вводят среду в трубы. При таком порядке заполнения аппарата теплообменивающимися средами создаются оптимальные условия для предупреждения возникновения чрезмерных температурных напряжений. При остановке аппарата доступ среды прекращают в обратном порядке. [c.155]

    Если исходный раствор легче, то его направляют в нижнюю часть экстрактора, а отбор рафината подача возвращаемого рафината Кг и растворителя 5 производятся в верхней части аппарата. Сборник 5, в котором находится исходный раствор, в обратной системе постоянно пополняется экстрактом Е , получаемым из растворителя. [c.186]

    В многоступенчатом нагнетателе или компрессоре имеются все характерные элементы многоступенчатого насоса — направля-юш,ие аппараты НА, обратные направляющие аппараты ОНА, диафрагмы с уплотнениями Д (рис. 15.2, а). На эпюре показано изменение давления и скорости газа в рабочем колесе и в отводе между точками /, 2, 5 и 4. [c.187]

    Аппараты схемы соединены между собой различными связями, в том числе обратными. Так, часть реакционной смеси (около 10%) после первой ступени компрессора 19 направляется в смеситель 1, в котором она смешивается с сырьем — природным газом, что обеспечивает работу реактора 2. Смесь, вышедшая из колонны синтеза аммиака 23, проходит конденсаторы 24 и 25, а также сепаратор 20, где отделяется целевой продукт — жидкий аммиак, и направляется опять в колонну синтеза, т. е. происходит рециркуляция. [c.31]

    Основное внимание при проектировании систем очистных сооружений и аппаратов, входящих в их состав, должно быть направлено на использование последних достижений научно-технического прогресса, при этом, в первую очередь, должны внедряться наиболее экономичные и прогрессивные решения. Имеется немало примеров, когда такие решения могут основываться на использовании классических методов очистки сточных вод (гравитационных, фильтровании, флотации и т. д.). Вместе с тем все большее распространение находят и сравнительно новые методы очистки (электродиализ, обратный осмос и т. д.). [c.15]


    Лопатки диффузорных аппаратов выполняются в виде прямых или изогнутых пластинок равной толщины или профилированными. Обратный направляющий аппарат, работающий в сочетании с лопаточными или безлопаточным диффузорами, представляет собой решетку лопаток, входные кромки которых (в периферийной части) загнуты в соответствии с направлением набегающего потока, а выходные кромки направлены радиально. Обычно лопатки обратного аппарата в машинах стационарного типа выполняются в виде ребер, отлитых за одно с диском диафрагмы. На рис. 6. 1 (в правой части) изображен обратный аппарат конструкции автора, где лопатки выполнены профилированными и образуют ряд каналов неизменного сечения. [c.169]

    Под обратным направляющим аппаратом понимают участок проточной части компрессора, соединяющий выходное сечение диффузора предыдущей ступени со входным сечением рабочего колеса следующей ступени. В большинстве случаев поток подводится к рабочему колесу без закрутки. Таким образом, обратный аппарат должен изменить направление потока в обеих плоскостях. В меридиональной плоскости поток поворачивается на 180° и направляется от периферии к центру, а в радиально-окружной плоскости поток должен в основном освободиться от закрутки. Естественно, что такой аппарат не может быть безлопаточным. [c.220]

Рис. 6. 33. Кривые изменения напра- 6. 34. Кривые изменения направле-вления потока в сечении О — О (над ния потока перед входом в каналы диафрагмой, см. рис. 6. 32) обратного аппарата (см. рис. 6. 32) Рис. 6. 33. <a href="/info/858556">Кривые изменения</a> напра- 6. 34. <a href="/info/858556">Кривые изменения</a> направле-вления потока в сечении О — О (над ния <a href="/info/145808">потока перед</a> входом в каналы диафрагмой, см. рис. 6. 32) обратного аппарата (см. рис. 6. 32)
    Обычно шнековая мешалка транспортирует жидкость со дна сосуда к поверхности жидкости. Затем жидкость освобождается из шнека и направляется обратно к днищу аппарата, заполняя пустоту , образовавшуюся при движении свежих порций жидкости к поверхности. Шнековая мешалка может работать и в обратном направлении, транспортируя жидкость с поверхности к днищу сосуда. В этом случае требуется меньшая мощность. [c.22]

    Схема фильтровальной установки с барабанным вакуум-фильтром дана на рис. У-23. Суспензия из аппарата / центробежным насосом 2 направляется в резервуар 3 барабанного фильтра 4. Избыток суспензии в процессе работы фильтра удаляется по переливному трубопроводу обратно в аппарат 1. Фильтрат и промывная жидкость под действием вакуума направляются в общий сепаратор 5 для отделения от воздуха, поступившего в фильтр во время стадий обезвоживания и промывки. Жидкость из сепаратора 5 по вертикальному трубопроводу высотой не менее 9 м под действием гидростатического давления попадает в сборник 6. Воздух из сепаратора 5 поступает в ловушку 7 для отделения от увлеченных им капелек жидкости, после чего удаляется вакуум-насосом из системы. Жидкость из ловушки 7 стекает в сборник 8 также под действием гидростатического давления. Сжатый воздух подается в фильтр через промежуточный сосуд 9 при помощи воздуходувки 10. [c.207]

    На рис. IV. приведена схема современной установки с двухступенчатой подачей раствора этаноламина, чем обеспечивается более экономичное использование пара и достигается лучшее обессеривание при одном и том же количестве реагента. Очищаемый газ, содержащий кислые компоненты, проходит абсорбер 1 снизу вверх. Навстречу ему в среднюю часть абсорбера подается пе полностью регенерированный раствор этаноламина, который поглощает основную массу сероводорода, но ие может полностью удалить серу из газа. В верх абсорбера поступает тощий, полностью регенерированный раствор этаноламина, который и поглощает оставшийся в газе сероводород. Оба потока насыщенного сероводородом раствора стекают в нижнюю часть абсорбера. Отсюда насыщенный раствор через регулятор уровня абсорбера подается в две точки реактиватора 2. Часть раствора поступает в верх аппарата, по проходит сверху вниз только половину его по противотоку с паром из кипятильника. Затем этот не полностью регенерированный раствор через теплообменник 4 и холодильник 3 обратно подается насосом 7 в среднюю часть абсорбера. Остаток насыщенного раствора этаноламина из абсорбера направляется в среднюю часть реактиватора 2, проходит вниз в кипятильник 5 и полностью освобождается от НаЗ, после чего через отдельные тепло- [c.147]

    Транс-р-Каротин. В эмалированный реактор 83, снабженный мешалкой и обратным холодильником, загружают i u - -каротин, из мерника 84 петролейный эфир (80—90° С), нагревают массу до кипения и продолжают перемешивать в течение 10—12 ч (изомеризация). Затем сливают в кристаллизатор 85, охлаждают до О — минус 2°С и кристаллизуют в течение 6 ч. Кристаллы выделяют в центрифуге 86, а маточный раствор I направляют в сборник 87 и после сгущения в вакуум-аппарате 88, кристаллизации в кристаллизаторе 89, выделения кристаллов в центрифуге 90 получают дополнительное количество кристаллов транс- -каротина II, которые поступают для перекристаллизации в кристаллизатор 85. Маточный раствор II является отходом производства. [c.61]


    Акрилонитрил загружают в реактор 1 (рис. 9), снабженный обратным холодильником из нержавеющей стали, туда же вводят из мерника 2 этиловый спирт, а из сборника 3 порошкообразный едкий натр. Реакцию проводят при температуре 50° С. Затем массу нейтрализуют уксусной кислотой до pH 6,0—6,5 и перегоняют в аппарате 4 с холодильником 5. В приемник б собирают фракцию, кипящую при температуре 170—173° С. Остальные фракции поступают в сборник 7, откуда их вторично направляют на раз-гонку. Процесс получения 3-этоксипропионитрила усовершенствован путем непрерывного егЬ осуществления в тонкопленочном реакторе [94, 95]. Реакцию цианэтилирования осуществляют в пленке в присутствии 0,5—  [c.81]

    Амид никотиновой кислоты. Его можно получать непосредственно из водно-аммиачного раствора. Для этого его направляют из сборника 7 в реактор 26, снабженный обратным холодильником, куда добавляют в качестве катализатора сильноосновную ионообменную смолу АВ-17 в ОН-форме, кипятят 70 мин. Затем на нутч-фильтре 27 отфильтровывают смолу, а фильтрат направляют в сборник 28 и далее в вакуум-аппарат 29, где упаривают до сиропообразной консистенции, сливают в кристаллизатор 30 и кристаллизуют при 0°. Кристаллы отфуговывают в центрифуге 31, высушивают в вакуум-сушилке 32, откуда через сборник 33 направляют на перекристаллизацию по трехступенчатой схеме (стр. 206). Выход на нитрил составляет 75% на пиколин — 64,9% [50]. [c.202]

    Обратная связь, или рецикл (схемы 6-9 на рис. 5.2). Часть потока после прохождения очередного элемента ХТС возвращается в него. Через аппарат, в который направляется рецикл Ур, проходит больший поток К, по сравнению с основным Кц, так что У= Кд + Ур. Отношение приращенного и основного потоков, называют кратностью циркуляции Кр = К/Кд. [c.235]

    Колебательный режим может возникнуть в системе с двумя обратными связями, примером которой может послужить производство азотной кислоты (рис. 5.25). Один из исходных потоков, воздух, сжимается компрессором К и направляется в технологические аппараты, обозначенные как подсистема А. На выходе из нее отходящий газ подогревается в теплообменнике ТО и направляется в турбину Т, где используется энергия давления отходящих газов и тепловой потенциал потока (после турбины его температура уменьшается). Конструктивно турбина и компрессор установлены на одном валу, так что вырабатываемая турбиной энергия используется для сжатия и подачи в систему воздуха. Это первая обратная связь. Выходящие из турбины горячие газы подогревают поток, направляемый в нее. Это - вторая обратная связь. [c.280]

    Пирокатехин загружают в стальной эмалированный аппарат 1, снабженный паро-водяной рубашкой, мешалкой и обратным холодильником 2. Туда же при работающей мешалке подают треххлористый фосфор из мерника 3. Мольное соотношение треххлористого фосфора к пирокатехину равно 1,5 1. После этого реакционную массу нагревают в течение 6—7 ч, постепенно повышая температуру до 90 °С. Затем в течение еще 2—3 ч повышают температуру до 140 "С и выдерживают реакционную массу 10—11 ч. Выделяющийся хлористый водород направляется в поглотительную систему, а продукты реакции передавливаются в куб 4 на разгонку. [c.339]

    Технологическая схема установки представлена на рис. 11.1. Исходный раствор неорганической соли из емкости / подается насосом 2 на песочный фильтр 3, где очищается от взвесей твердых частнц. Далее раствор насосом высокого давления 4 подается в аппараты обратного осмоса 5, где его концентрация повыщается в несколько раз. Концентрат подогревается в теплообменнике 6 и направляется для окончательного концентрирования в вынарной аппарат 7, работающий под избыточным давлением. (В случае больших производительностей целесообразно для экономии греющего пара использовать многокорпусную выпарную установку.) Упаренный раствор стекает в емкость 8. Пермеат из аппаратов обратного осмоса возвращается для исиользования на производстве либо сбрасывается в канализацию,- в зависимости от его качества. Вторичный нар из выпарного аппарата 7 направляется для обогрева других производственных аппаратов, в том числе теплообменника 6. (В схеме может быть предусмотрена система вентилей для отключения мембранных аппаратов, вышeдuJИX из строя, и их замены без прекращения работы установки.) [c.320]

    Принципиальная схема установки УКПГ приведена на рис. 1-2. Газ от скважин по газопроводам I поступает в сепаратор 1, в котором отделяются вода, газовый конденсат, механические примеси, ингибитор и т.п. Отсепариро-ванный газ проходит теплообменники 2 и 3,ъ которых он охлаждается за счет обратных потоков отсепарированного газа и конденсата. За счет редуцирования холодного газа в редукционном клапане 6 газ охлаждается до температуры -15...-25°С. На некоторых УКПГ вместо редукционного клапана устанавливается детандер, позволяющий эффективно использовать дроссель-эффект. Для предотвращения образования льда в поток газа перед теплообменниками впрыскивается метанол (V поток). В сепараторе 4 из газа выделяются водный раствор метанола и газовый конденсат. Эта смесь перетекает в отстойник 5, в котором происходит разделение конденсата и водного раствора метанола. Холодный газ из сепаратора 4 и конденсат из отстойника 5 через теплообменники 2 и 3 направляются соответственно в газопровод и конденсатопровод. Водный раствор метанола из аппарата 5 направляется в колонну 8 через теплообменник 7. В колонне происходит разделение потока на метанол (V) и воду (IV). Метанол насосом 11т емкости 10 подается частично на орошение колонны 5 и в поток газа перед теплообменниками 2иЗ. [c.16]

    Циркуляционная газовая смесь подается в корпус высбкого давления через верхнее отверстие в переднем фланце корпуса, проходит между стенкой корпуса и ребрами электродвигателя, охлаждая последний, и через окна входного устройства попадает в колесо первой ступени. Диффузор и обратный направляющий аппарат диафрагмы обеспечивают подачу газа из одного колеса в другое. Из выходного аппарата газ направляется в нагнетательный патрубок. [c.31]

    Далее весь азот высокого дaвлeния снова соединяют в один поток , дросселируют до давления 1,8 МН/м и охлаждают в теплообменнике 18 до —165 °С при этом азот сжижается. Часть его используют для добавления в азотоводородную смесь, остальной азот охлаждают до минус 185—минус 195 °С в аппарате 17 и делят на два потока. Первый поступает на верх колонны 15 для промывки азотоводородной смеси, второй — дросселируют до давления 0,12 МН/м в межтрубное пространство азотного испарителя 17. Испаряющийся при этом азот (обратный) направляют в теплообменник 19, а из него во всасывающую линию компрессора 33. [c.175]

    Азотные подущки в необходимых случаях должны обеспечиваться системой азотного дыхания, оснащенной регулятором давления прямого действия типов до себя и после себя . В случае падения давления в сети наиболее опасные операции прекращаются (например, операция синтеза ДЭАХ), а для передачи ДЭАХ на полимеризацию и создания азотных подушек в аппаратуре должен подключаться азот из баллонов и от другого источника, находящегося в постоянной готовности. На входе азота в аппарат или группу аппаратов устанавливают управляемый автоматический регулятор давления — клапан, поддерживающий заданное давление после себя , на выходе устанавливают шариковый клапан — регулятор давления прямого действия тппа до себя . Обратный азот после шарикового клапана направляют в систему, соединенную с газгольдером. Необходимо установить анализаторы качества азота на содержанпе кислорода и воды в свежем азоте с сигнализацией о превышении допустимых значений. [c.118]

    На современных производствах для перекач ки сжиженного хлора устанавливают погружные насосы. В этом случае ликвидируются потери хлора с воздухом, хотя аварийные утечки неизбежны во время ремонта насосов и их техобслуживания при наличии скруббера. Потери хлора с водой, конденсирующейся из газа от электролизера, колеблются в пределах 0,2— 0,6 т на 100 т сжиженного хлора и зависят от типа электролизера, температуры в нем. В настоящее время конденсирующаяся вода может быть направлена в заводскую коммуникацию сточных ВОД, в изеесткавую яму или подкислена и десорбирована до содержания хлора менее чем 10 чнм (50—100 г/т сжиженного хлора) в производственном аппарате перед выбросом. Хлор, десорбированный из водного конденсата, подается обратно в поток электролизного газа. [c.255]

    При производстве новолачных олигомеров с использованием аппаратов идеального вытеснения (рис. 34) фенол и формалин из мерников / и 2 подают в емкость 4 для приготовления реакционной смеси. В эту же емкость из аппарата 3 подается раствор щавелевой кислоты. Полученная реакционная смесь перекачивается в расходную емкость 5, а из нее — в напорную емкость 6, откуда самотеком поступает в многосекционный реактор 7, соединенный с наклонным обратным холодильником Я. В первой секции реактора смесь нагревается до 70—80 "С, а затем — за счет тепла экзотермической реакции доводится до кипения, которое поддерживается в течение всего времени пребывания смеси в реакторе. Эмульсия олигомеров из реактора поступает в отстойник 9, в котором после охлаждения примерно до 60 °С разделяется на два слоя нижний— олигомерный и верхний — водную фазу. Из отстойника олигомеры с влажностью 15—18% и содержанием свободного фенола около 16% поступают в трубную сушилку //, а водная фаза — на обес-феноливание. Высушенные олигомеры подаются в стандартизаторы 12, а затем на охлаждающий барабан 14, с которого срезаются ножом, и направляются на упаковку. Пары, выходящие из трубной сушилки 11, конденсируются в холодильнике 13. Конденсат собирают в вакуум-сборниках 15, а затем перекачивают насосом в мерник 15, из которого вводят малыми добавками в исходное сырье (или направляют на термическое обезвреживание — сжигание). [c.56]

    Наиболее распространенным до сих пор был прибор Отмера [80, 81], изображенный на рис. 51. Принцип действия этого апна рата ясен из рисунка. Пробу жидкости из куба отбирают в точке А, пробу дистиллата — в точке В. Этот аппарат, в котором на уста новление равновесия требуется примерно 1 час, дает хорошо вое производимые результаты. При работе с ним имеется, правда, опасность уноса капель жидкости вследствие перегрева измерение температуры кипения не является точным. Гиллеспи [82] пытался избежать этой ошибки, создавая с помощью насоса Коттреля и разделительной камеры циркуляцию смеси паров и жидкости и направляя от разделительной камеры пары к холодильнику, а жидкость— к кубу. В этом случае конденсат пара стекает из ловушки для конденсата обратно в куб (рис. 52). [c.95]

    Соль, полученную на стадии выпарки, после ее отмывки от гидроксида натрия электрощелоками и умягченной водой, которые возвращаются в производство, растворяют в аппаратах с ложным дном и полученный обратный рассол направляют в отделение приготовления очищенного рассола для электролиза. Если соль загрязнена сульфатом натрия, производят очистку ее с целью вывода сульфата натрия из процесса, так как в противном случае сульфат натрия будет накапливаться в очищенном рассоле при поступлении все новых его количеств с сырым рассолом. Накопление сульфата натрия в рассольном цикле прив.едет к снижению растворимости хлорида натрия, концентрация соли в очищенном рассоле будет падать, что вызовет рост расхода электроэнергии при электролизе и ухудшение других показателей. [c.70]

    НИК 5 и электроподогреватель 6. Нагретый аммиак испаряет кислоту смесь паров при температуре 390° поступает из испарителя в реактор 7, проходит через слой катализатора (время контакта 6 сек.) и продукты реакции через теплообменник 5 направляются на конденсацию и разделение в аппарат 8. 3500 л катализатора в реакторе обеспечивают производительность 3120 кг динитрила адипиновой кислоты в сутки. В аппарате 8 с насадкой из колец Рашига в нижней части и с холодильником в верхней конденсируются ди-питрил адипиновой кислоты и вода. Избыток аммиака через обратный холодильник 9 и каплеотбойник 10 возвращается в цикл. [c.684]

    В реактор 15 из нержавеющей стали, снабженный обратным холодильником, загружают солянокислый ацетамидин и из мерника 16 метанольный раствор метилата натрия, перемешивают 30 мин при температуре 20 С. Из мерника /7 вводят в реактор а-диметоксиметил- 3-метоксипропионитрил, перемешивают 3 ч при кипении, затем охлаждают и фильтруют через нутч фильтр 18 и сборник 19, откуда направляют в вакуум-перегонный аппарат 20 для отгонки метанола. Затем добавляют воды, едкого натра, нагревают [c.96]

    Промывные воды используют для приготовления первоначальной суспензии, причем для того, чтобы не вводить больших количеств промывной жидкости, работу проводят по принципу противотока осадок движется по направлению от первого отстойника к последнему, проходя последовательно через все аппараты, а. свежая промр.гвная жид-кость поступает в последний от- // ne/fз гu стойник, из него направляется в " предпоследний и т. < д., проходит последовательно через отстойники в направлении, обратном движению осадка. [c.208]

    Исходный бензол осушают, отгоняя влагу г > тодом азеотропноС ректификации. Ее осуществляют в насадочной колонне 5 (см. рис. t), Азеотроп конденсируется в теплообменнике S и разделяется в сепараторе 9 одна часть верхнего слоя стекает обратно в колонну 5 в виде флегмы, вторая часть по трубопророду гюстулает в сборник влажного бензола, откуда вновь возвращается на ректификацию, нижний водный) слой через гидрозатвор направляется на сброс. Безводный бензол из куба колонны после охлаждения в теплообменнике 4 перетекает в сборник 7, откуда насосом 10 через теплообменник 11 его подают в каскадные алкилаторы 13 и 14. Алкилаторы - это цилиндрические охлаждаемые аппараты, снабженные мешалкой. В первый из двух реакторов - алкилатор I.3 - непрерывно подают хлоралканы, охлажденные до 5 "С, из емкости 2 и бензол - из емкости 7 их объемное соотношение составляет 1 1,2. Катализаторный комплекс в количестве 10- 15% от массы исходных реагентов поступает из емкости 1 . Алкилирование протекает при температуре 8-10 °С, алкилатор охлаждают рассолом. Далее реакционная смесь самотеком поступает во второй из двух реакторов - алкилатор 14, где при помощи циркулирующей в рубашке горячей воды поддерживают температуру 40 - 50 "С. Продолжительность алкилирования ц каждом реакторе 40 - 50 мин. [c.48]

    В некоторых случаях, например в рукавных фильтрах с обратной продувкой (ФРО), газовый поток из общего раздающего коллектора (подводящего участка, см. диафамму 1.8.7-27) поступает на фильтрацию в секции. Очищенный газ из секций через выпускные клапаны тарельчатого типа направляется в собирающий коллектор (выпускной канал) и выводится из аппарата. При необходимости регенерации [c.399]


Смотреть страницы где упоминается термин Аппарат обратный направляющий: [c.148]    [c.40]    [c.319]    [c.194]    [c.69]    [c.59]    [c.62]    [c.56]    [c.88]    [c.117]    [c.127]    [c.234]    [c.310]    [c.296]   
Компрессорные машины (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аппарат направляющий



© 2025 chem21.info Реклама на сайте