Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Второй закон термодинамики Второй закон термодинамики

    В предыдущих рассуждениях был использован второй закон термодинамики (за некоторыми исключениями, например, в 37) только в виде высказывания, что термодинамические потенциалы в состоянии равновесия принимают стационарное значение. Дальнейшее высказывание, что это стационарное значение является минимумом, составляет, как уже было кратко отмечено в 18 и 23, содержание условий стабильности. Задача данной главы полностью аналогична той, которая обсуждалась в гл. IV и V для условий равновесия. Теперь речь идет о том, чтобы из общей формулировки условий стабильности в 18 и 23 при помощи фундаментального уравнения вывести в явном виде следствия. Этим ограничивается задача. Формально нужно теперь исследовать вариации термодинамических потенциалов более высокого порядка. В рамках термодинамики для четкой трактовки рассматривают, как и в случае условий равновесия, только такие возможные возмущения, которые можно выразить через величины состояния. Это ограничение допускает для гомогенной системы при условиях равновесия лишь обсуждение равновесий, которые можно представить через внутренние параметры. Для условий стабильности гомогенной системы даже при исключении внутреннего равновесия постановка вопроса оказывается не тривиальной. Фактически, как будет видно, остальные проблемы стабильности, если отвлечься от химического равновесия, можно свести к проблеме стабильности гомогенной фазы. Вопрос стабильности химического равновесия является сравнительно простым, и позднее можно будет удовлетвориться некого- [c.198]


    Таким принципом, устанавливающим, какие именно процессы возможны и какие невозможны, является второе начало (или второй закон) термодинамики. [c.88]

    Понятие термодинамической вероятности позволяет уточнить содержание второго закона термодинамики. В любом процессе изменяются микросостояния и термодинамическая вероятность системы. В статистической термодинамике предполагается, что процесс, приближающий систему к состоянию равновесия, соответствует переходу от менее вероятных состояний к более вероятным. Процесс, удаляющий систему от состояния равновесия, с точки зрения статистической термодинамики не является невозможным, а просто менее вероятным по сравнению с процессом, ведущим к равновесию. Таким образом, строго обязательная направленность самопроизвольных процессов, утверждаемая классической термодинамикой, заменяется представлением о статистическом характере второго закона термодинамики. Термодинамические утверждения, носящие категорический характер, например об обязательном возрастании энтропии в ходе самопроизвольного процесса в изолированной системе, приобретают смысл утверждений, определяющих наиболее вероятный ход процесса. [c.90]

    Здесь использовались микрофизические представления для пояс нения различия между теплотой и работой они выходят за пределы классической термодинамики. Если же оставаться в этих пределах, то неравноценность форм передачи энергии в виде работы и теплоты устанавливается, как только что упоминалось, одним из наиболее фундаментальных законов естествознания — вторым законом термодинамики (см. гл. III). [c.25]

    Чтобы достичь полноты изложения, в гл. 1—4 рассмотрен ряд важных результатов равновесной и линейной неравновесной термодинамики. Сюда включены законы сохранения, второй закон термодинамики, основные теоремы линейной неравновесной термодинамики (такие, как соотношения взаимности Онзагера, теорема о минимуме производства энтропии) и, наконец, классическая теория устойчивости Гиббса — Дюгема. Уровень изложения этих вопросов таков, что позволит читателю понять дальнейший материал, не обращаясь к другим источникам. [c.13]

    Проанализируем протекание процесса структурообразования в течение четверти периода с позиции термодинамики. Второй закон термодинамики позволяет установить возможность осуществления и направление протекания самопроизвольного процесса. В формулировке второго закона отсутствует категория времени. Поэтому описание кинетических закономерностей протекания самопроизвольных неравновесных процессов, особенно в системах, значительно удаленных от состояния термодинамического равновесия, как правило, не проводят с позиций термодинамики. [c.246]


    Диффузия характеризуется разбавлением и расширением сконцентрированных зон вещества или же взаимным перемешиванием первоначально разделенных веществ. Диффузия — следствие одного из наиболее общих законов природы — второго закона термодинамики [6]. [c.30]

    Подобно другим законам науки, второй закон термодинамики имеет определенные границы применимости, устанавливаемые статистической термодинамикой. В статистической термодинамике энтропия является мерой вероятности термодинамического состояния системы. Увеличение энтропии означает переход от состояния меньшей вероятности к состоянию большей вероятности. Поэтому второй закон термодинамики является вероятностным законом, который применим не для одной или нескольких частичек, а только для совокупности [c.129]

    Второй закон термодинамики сущность термодинамическая шкала температур, аналитическое выражение, [c.23]

    Второй закон термодинамики требует только того, чтобы сумма всех членов типа А.г была положительна. Поэтому возможно сопряжение реакций, когда отдельные отрицательные члены компенсируются другими, положительными. Это явление имеет большое значение в биологических процессах. [c.60]

    Исследование работы ректификационной колонны, при условии принятия гипотезы идеальной тарелки, основывается на использовании трех фундаментальных законов, а именно, сохранения вещества, сохранения энергии и, наконец, второго закона термодинамики. Применение первых двух законов находит свое практическое выражение в составлении основанных на них уравнений материального и теплового баланса. Второй же закон термодинамики является той основой, которая используется при выводе равновесных соотношений фазового сосуществования парожидких систем, устанавливающих предельные глубины процессов массообмена и энергообмена взаимодействующих неравновесных фаз. [c.68]

    По второму закону термодинамики для изменения в изолированной системе можно записать следуюш,ее условие  [c.30]

    До сих пор мы основывались непосредственно на втором законе термодинамики и в конечном счете искали экстремум энтропии системы как функцию какой-либо непостоянной, содержащей экстенсивную величину состояния X системы (например, У в случае, когда перегородку можно было считать подвижной). Однако полностью равноценным будет способ, когда вместо экстремума энтропии отыскивается экстремум какого-либо другого свойства системы, который будет соответствовать условию (9-4, а). [c.126]

    ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ [c.158]

    В приложении к химическим процессам второй закон термодинамики может быть сформулирован следующим образом в изолированной системе всякое химическое взаимодействие между [c.158]

    Второй закон термодинамики имеет следующее математическое выражение  [c.159]

    Если же работу данного химического процесса при электролизе выразить через его тепловой эффект или изменение свободной энергии, то согласно второму закону термодинамики получим  [c.251]

    Уравнение второго закона термодинамики после приведения сохранит свой вид  [c.73]

    Одним из важных следствий второго закона термодинамики является уравнение Клапейрона — Клаузиуса [c.8]

    Из второго закона термодинамики следует, что для обратимых процессов [c.68]

    С другой стороны, из второго закона термодинамики следует, что для обратимого процесса [c.87]

    Второй закон термодинамики [c.30]

    Основным законом, которому подчиняются термодинамические циклы, является второй закон термодинамики. Согласно этому закону в термодинамическом цикле невозможно полностью преобразовать в работу всю теплоту, подведенную к рабочему телу часть подведенной теплоты должна быть отдана холодному источнику и в работу не преобразуется. [c.31]

    Термодинамика, которая изучает состояния равновесия и переходы между ними, вынуждена использовать в своих теоретических исследованиях понятие равновесных процессов. Их значение особенно велико в связи с вторым законом термодинамики. Первый закон в форме его основных уравнений приложим в равной мере к равновесным и неравновесным процессам. Однако расчеты по первому закону во многих случаях могут быть количественно проведены только для равновесных процессов (вычисление работы). [c.36]

    Это свойство идеального газа, как будет показано ниже (стр. 126), вытекает из уравнения Клапейрона—Менделеева и второго закона термодинамики. [c.52]

    Оба изложенные положения (постулаты Клаузиуса и Томсона) являются формулировками второго закона термодинамики и эквивалентны друг другу, т. е. каждое из них может быть доказано на основании другого. [c.79]

    Заканчивая изложение основных положений второго закона термодинамики, приведем некоторые высказывания М. В. Ломоносова, основанные на разработанной им механической теории теплоты и опубликованные за сто лет до того, как утвердился второй закон термодинамики. [c.80]

    Путем исследования цикла Карно с использованием второго закона термодинамики могут быть доказаны две важные теоремы, из которых можно найти количественный критерий направления процесса. [c.81]


    Пусть обе машины работают совместно так, что работа Л,у, полученная в машине //, затрачивается в машине I. При этом нагреватель отдает машине II теплоту Q,, и получает от машины / теплоту Q,. Так как Q/>Q// [уравнение (П1, 3)1, то в итоге нагреватель получает теплоту (Q,—Q,,). Холодильник отдает теплоту (Q l—Q/i), равную Q,—Q,,. Суммарная же работа обеих машин равна нулю (А,——А,,). Таким образом, единственным результатом совместного действия двух машин является перенос теплоты от холодильника к нагревателю. По второму закону термодинамики (формулировка Клаузиуса) это невозможно и, следовательно, предположение, что неправильно. [c.82]

    Гл. т. Второй закон термодинамики [c.84]

    Границы применимости второго закона. Статистический характер второго закона термодинамики приводит к заключению, что увеличение энтропии в самопроизвольных процессах указывает на наиболее вероятные пути развития процессов в изолированной системе. Невозможность процесса следует понимать лишь как его малую вероятность по сравнению с обратным. Поэтому второй закон термодинамики в отличие от первого нужно рассматривать как закон вероятности. Он тем точнее соблюдается, чем больше размеры системы. Для систем, состоящих из громадного числа частиц, наиболее вероятное направление процесса практически является абсолютно неизбежным, а процессы, самопроизвольно выводящие систему из состояния равновесия, практически невозможны. Так, самопроизвольное изменение плотности 1 см воздуха в атмосфере с отклонением на 1% от ее нормальной величины может происходить лишь один раз за 3-10 лет. Однако для малых количеств вещества флуктуации плотности отнюдь не невероятны, а наоборот, вполне закономерны. Для объема воздуха 1 1(П см повторяемость однопроцентных флуктуаций плотности составляет всего 10" с. Таким образом, действие второго закона нельзя распространять на микросистемы. Но также неправомерно распространять второй закон на вселенную. Отсюда следует, что ойцая формулировка законов термодинамики, данная Клаузиусом, — энергия мира постоянна, энтропия мира стремится к максимуму — во второй ее части неправильна. Неправильно и вытекающее из нее заключение о возможности тепловой смерти вселенной , так как второй закон термодинамики применим лишь к изолированной системе ограниченных масштабов. Вселенная же существует неограниченно во времени и пространстве. [c.103]

    Как очевидно, постулаты теории эволюции - это утверждения, полностью противоречащие законам физики. Второй закон термодинамики, как логически, так и с научной точки зрения, ставит непреодолимые физические препятствия перед сценарием эволюции. Эволюционисты могут преодолеть эти препятствия только в своих мечтах, ибо они не могут привести никаких содержательных или мало-мальски научных объяснений. Например, известный эволюционист Джереми Рифкин отмечает, что верит в магическую силу, позволившую эволюции преодолеть это закона физики Закон энтропии говорит, что эволюция рассеет всю необходимую для жизни энергию на этой планете. В нашем же понимании, эволюция полно- [c.129]

    Для отдельных частных и конкретных случаев формулировка второго закона термодинамики принимает несколько иной вид. Так, например, в применении к тепловым двигателям этот закон гласит невозможна никакая периодически действующая машина, которая бы беспредельно совершала работу за счет отнятия теплоты от одно1 о и того же источника тепла без пополнения его тепловой энергией. [c.158]

    Так как вследствие обратимости рассматриваемого процесса работа, совершаемая системой, достигает наибольшего предельного значения (в соответС1]вин со вторым законом термодинамики), то работу любого изотермического обратимого процесса принято называть м а к с и м а л ь н о и работой. [c.87]


Смотреть страницы где упоминается термин Второй закон термодинамики Второй закон термодинамики: [c.318]    [c.144]    [c.408]    [c.160]    [c.162]    [c.86]   
Смотреть главы в:

Правило фаз Издание 2 -> Второй закон термодинамики Второй закон термодинамики

Правило фаз Издание 2 -> Второй закон термодинамики Второй закон термодинамики




ПОИСК





Смотрите так же термины и статьи:

Закон второй

Закон термодинамики

Закон термодинамики второй

Термодинамики второй



© 2025 chem21.info Реклама на сайте