Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоты сгорания некоторых простых веществ

    Теплоты сгорания некоторых простых веществ [c.336]

    В табл. 1 приводим некоторые данные по теплотам сгорания простейших веществ. [c.51]

    Топливо представляет собой органические вещества , которые служат человеку в качестве источника энергии и находятся в природе или получаются искусственно в количествах, достаточных для удовлетворения потребностей всего народного хозяйства. Многие вещества могут гореть, но немногие из них относятся к группе топлива. Для того чтобы вещество было топливом, оно должно обладать достаточно высокой теплотой сгорания, быть распространенным, добываться просто и дешево. Продукты его горения должны быть летучими, чтобы не затруднять процесса горения, и не должны быть ядовитыми для людей и животных. Некоторые виды горючих ископаемых используются не только для получения тепловой энергии, но и в качестве сырья в химической промышленности. [c.4]


    Расчет теплоты реакций по теплотам образования участвующих в них веществ. Закон Гесса дает возможность рассчитать теплоту множества различных химических реакций по минимальному числу теплот некоторых реакций. Как было показано выше, в качестве таких теплот можно выбрать теплоты сгорания. Однако обычно при термохимических расчетах пользуются теплотами образования химических соединений из простых веществ. [c.20]

    Значения энергий некоторых связей, найденные из теплот образования и сгорания соединений или из спектральных данных, приведены в приложении 6. Приведенные во многих учебниках, руководствах, монографиях и справочниках аналогичные таблицы содержат величины, часто заметно различающиеся между собой. Причиной такому положению является, во-первых, расхождение в величинах энергии возгонки углерода (р-графита), положенных в основу расчета. До последнего времени эту величину нельзя считать точно установленной (разные авторы дают ее значение или 125 [8] или 171,3 ктл г-атом (64]). Однако расхождения несущественны для практического использования таблиц, так как влияние этих величин элиминируется при обратном расчете теплот образования соединений из простых веществ с помощью той или иной таблицы. Второй, более существенной причиной расхождений (менее значительных) являются различные наборы исходных данных, положенных в основу отдельных таблиц. [c.34]

    Часто тепловой эффект реакции обозначают просто как теплоту реакции (теплоту сгорания, теплоту возгонки и т.д.). Правильнее употреблять понятие энтальпия реакции. Для любого химического вещества ири стандартных условиях характерно определенное значение некоторой величины, называемой энтальпией (Я), а тепловой эффект реакций выражают разницей энтальпий (АЯ) реагентов и продуктов реакции и называют энтальпией реакции. [c.40]

    В табл. 3.5 произведено сравнение наблюдаемых и вычисленных теплот сгорания для ряда простых, не резонирующих веществ. Эти вещества выбраны более или менее произвольно, но так, что они охватывают довольно большое число разных типов соединений. (Мы пытались только исключить соединения типа четыреххлористого углерода, в котором может иметь значение электростатическое взаимодействие между соседними полярными группами.) Как видим, расхождения обычно не превышают 1—2% (а иногда бывают и меньше), но они гораздо больше, чем в теплотах гидрирования. Совпадение, несомненно, можно улучшить, вводя дополнительные поправки, по типу поправок, принятых в табл. 3.4 для двойной связи углерод-кислород. В этом направлении делались некоторые попытки но из-за отсутствия действительно надежных данных они обычно относятся к ограниченным областям. Поэтому мы будем продолжать пользоваться значениями из табл. 3.4 для того, чтобы возможно большее число различных веществ рассмотреть с одной точки зрения, хотя иногда и ценой некоторой неточности. [c.100]


    Второй закон, сформулированный выше, приводит пас к не менее интересным результатам. Г-н Уре опубликовал, как Вы видели, исследования по вопросу о количествах теплоты, выделяемой различными видами каменного угля. Из этих опытов он делает заключение, что до сих пор обычно применяемый метод, при котором полезный эффект топлива измеряется количеством кислорода, затраченного на горение, должен быть отброшен. Уре нашел, что каменный уголь дает тем меньше тепла, чем больше он содержит водорода. Он объясняет это образованием паров воды, которые поглощают некоторую часть теплорода. Я ценю этот опыт тем более, что автор, который пе знал причины замеченного им явления, дал ему совершенно неправильное объяснение если не считать посторонних веществ, при окончательном сгорании получаются только газы. Сущность же дела такова сумма тепла, которая соответствует определенному количеству воды и углекислоты, образующихся при горении угля, постоянна, а потому очевидно, что, если водород был ранее связан с углеродом, то это соединение не могло произойти без выделения тепла это количество теплоты уже исключено и не может содержаться в той теплоте, которая выделяется при окончательном сгорании угля. Отсюда следует весьма простое практическое правило горючее, сложное по своему составу всегда выделяет меньше тепла, чем его составные части, отдельно взятые. Достаточно взглянуть на результаты опытов г-на Дюлонга, чтобы убедиться, что они хо- [c.127]

    Непосредственное измерение теплот реакций. Ввиду неточностей, возникающих при вычислении теплот образования из теплот сгорания для всех веществ, кроме простейших органических, более простым и более надежным является непосредственное измерение теплоты некоторых типов реакций, представляющих теоретический интерес, вместо определения теплоты образования отдельных веществ, участвующих в этих реакциях. Например, подобные исследования были выполнены Кистяковским и его сотрудниками [11—18] в основном они были посвящены измерению теплот реакций присоединения к различным ненасыщенным алифатическим и ароматическим веществам от одной до четырех молекул Н на л олекулу взятого соединения, в присутствии подходящих катализаторов при 82° С. Таким же образом Конн, Кистяковский и Смит [19] измерили количество тепла, выделяющееся при присоединении бгз к некоторым олефиновым соединениям, и теплоту присоединения С к этилену. Так как теплоты образования либо начальных, либо конечных продуктов в этих реакциях известны с достаточной точностью, то точ-ндсть определения этим способом теплот образования других веществ, участвующих в реакции, должна быть вполне удовлетворительной. Конечно, область применения метода непосредственного измерения теплот реакций ограничивается такими типами реакций, которые могут быть осуществлены со скоростями, допускающими калориметрическое изучение, и не осложняются нежелательными прбочными реакциями. [c.50]

    Вычисления теоретического количества выделенной энергии относительно просты, поскольку имеются многочисленные данные по теплотам сгорания. Здесь в качестве полезных источников можно рекомендовать табл. 9.18 и 9.20 из работы [Perry,1973], где даются теплота сгорания и адиабатическая температура пламени для веществ, находящихся в газовой фазе и сгорающих с образованием газообразных продуктов. Некоторые из этих данных занесены в табл. 8.11, в которой теплота сгорания преобразована в МДж/кг, или ГДж/т. Из таблицы видно, что вещества, которые чаще других приводят к образованию огневого шара, имеют теплоту сгорания, изменяющуюся в пределах 45 - 48 МДж/кг (ГДж/т), и адиабатическую температуру пламени около 2250 - 2350 К. Так что если для дальнейших расчетов выбрать теплоту сгорания, равную 47 МДж/кг, и адиабатическую температуру пламени 2300 К, то это будет вполне обоснованное предположение. [c.178]

    В предшествующем разделе было дано определение теплоты реакции как количества теплоты, выделяющейся или поглощаемой при реакции, протекающей в условиях постоянства температуры и давления. В иастоящее время в учебниках н справочниках используют два взаимно противоречащих определения теплоты реакции. Более ста лет было принято определять теплоту реакции (теплоту сгорания, теплоту образования, теплоту растворения) как количество теплоты, выделяющейся в данном процессе, т. е. как —кН°. С другой стороны, теплоты плавления и парообразования определяли как количества теплоты, поглощаемые при плавлении или парообразовании. За последние годы многие химики приняли определение теплоты реакции как теплоты, поглощаемой в процессе ее. В таком смысле пользуются этим термином, например, в весьма ценном справочнике Избранные значения химических термодинамических свойств , выпущенном Бюро стандартов США в виде циркуляра N0. 500, где приведены значения теплот образования соединений из простых веществ в их стандартных состояниях, а также даны некоторые другие характеристики веществ. [c.161]


    Герман не делает различия между двумя связями С—О и связью С=0. Поскольку и — со + /го — ск — оо есть теплота сгорания одной валентной пары сЬ, V — 2со — сс — оо теплота сгорания одной валентной пары сс, а валентные пары со и ко, по определению, не могут иметь теплот сгорания, то теплоту сгорания насыщенных соединений, содержащих только С, Н и О, можно сразу определить, суммируя значения и у для валентных пар с/г и сс данного вещества. Герман с самого начала оговаривает, что все расчеты ведутся на один моль соединения, Таким образом, теплота сгорания 46 г спирта будет равна 5г + у, а 60 г уксусной кислоты — Ъи V. Заимствуя данные по теплотам сгорания этих соединений из таблиц Фавра и Зильбермана, Герман вычисляет V и затем и. С помощью этдх значений он рассчитывает затем теплоты горения для ряда спиртов, кислот, простых и сложных эфиров, ацетона и метана. Он показывает, что расхождение рассчитанных значений с опытными (Фавра и Зильбермана) меньше, чем, например, между экспериментальными данными разных авторов. Однако если такое согласие имеет место в большинстве случаев, то в некоторых, а именно в случае веществ с относительно более простой конституцией ( болотный газ , муравьиная кислота и ее метиловый эфир) отклонение таково, что правило аддитивности для них не является строго правильным . Таким образом, Герман в 1869 г. установил те исключения для первых членов гомологического ряда, которые гораздо полнее были вновь сформулированы в результате прецизионных экспериментов Россини и друшх авторов. Герман дает совершенно верное общее объяснение этому факту, говоря, что теплота удерживания валентной пары зависит не только от природы обеих валентностей..., а на нее, следовательно, влияют остальные составные части атомной группы . К анализу этого весьма сложного положения вещей , можно согласно Герману, приблизиться лишь постепенно, вводя дополнительные предположения и проверяя их опытным путем. И первое его предположение заключается в том, что влияния эти распространяются только на один данный атом. Поэтому Герман вводит дополнительные индексовые обозначения для связей СН, показывающие со сколькими и какими тремя другими атомами соединен углерод, образующий данную связь. [c.115]


Смотреть страницы где упоминается термин Теплоты сгорания некоторых простых веществ: [c.275]    [c.468]   
Смотреть главы в:

Краткий справочник химика Издание 7 -> Теплоты сгорания некоторых простых веществ




ПОИСК





Смотрите так же термины и статьи:

Вещества простые

Теплота сгорания



© 2025 chem21.info Реклама на сайте