Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение волокон прядением из расплава

    Для получения достаточно прочных волокон необходимо, чтобы между соседними макромолекулами действовали значительные межмолекулярные силы притяжения. Это возможно только в том случае, если макромолекулы имеют линейную структуру (или при наличии разветвленной структуры боковые цепи невелики) и если они будут расположены наиболее правильно, по возможности параллельно друг другу. Для этого макромолекулы полимера должны быть прежде всего в какой-то степени отделены друг от друга полимер переводят в раствор (прядильный раствор) или получают его расплав. Это первая стадия в процессе получения химических волокон. Второй стадией является прядение (или формование) волокон из расплава или прядильного раствора продавливанием через фильеру (небольшой металлический колпачок, в дне которого имеются тончайшие отверстия, 0,06—0,5 мм) с последующим затвердеванием струек расплава, или коагуляцией струек раствора, или же удалением из них растворителя. Образующиеся при этом из струек волокна затем в большинстве случаев вытягивают. При формовании и вытягивании как раз и осуществляется взаимная ориентация молекул. Волокна или скручиваются вместе, образуя нить искусственного шелка (филаментную нить), или режутся на небольшие кусочки (штапельки), длиной 4—15 см, образуя штапельное волокно, или реже (при большем диаметре отверстий) каждое волокно остается отдельным моноволокном (применяется для изготовления щеток и трикотажа). Третья стадия процесса заключается в обработке полученного волокна различными реагентами (отделка), а для шелка также в проведении текстильной подготовки (кручение нити, перематывание на бобины — катушки и т. д.). [c.329]


    Приготовление прядильной массы. Не все природные и синтезируемые высокополимеры могут служить основой для производства волокна. Получение вязких концентрированных растворов (7—25%) высокополимеров в доступных растворителях (щелочь, ацетон, спирт и пр,) или перевод смолы в расплавленное состояние — обязательное условие для осуществления процесса прядения, или правильнее сказать, формования химических волокон. Только в растворе или в расплавленном состоянии могут быть созданы условия, позволяющие снизить энергию взаимодействия макромолекул и после преодоления межмолеку-лярных связей ориентировать молекулы вдоль оси будущего волокна. Так, целлюлоза с помощью химических реагентов переводится в растворимое состояние. Некоторые смолы растворяются в ацетоне или расплавляются при повышенной температуре. Раствор или расплав тщательно очищается от примесей и нерастворимых частиц, для чего проводят 2—4 фильтрации, и освобождается от пузырьков воздуха. На этой стадии производства добавляют красители и другие соединения, придающие волокну окраску, матовость и т. д. [c.558]

    Для непрерывного процесса полимеризации капролактама по способу Н. П. с прядением волокна из расплава предлагается метод непрерывного освобождения полимера от мономеров, содержащихся в нем в количестве 8—15%. Для этой цели расплав в вакууме непрерывно пропускают тонким слоем по наклонным поверхностям конусов внутри прядильной шахты . Для улучшения равномерности свежеспряденных полиамидных волокон предлагается быстро пропускать их на пути к приемной шпуле через камеру с влажным воздухом (90 у влажности), нагретым выше 65°. В связи с этим интересно отметить, что в настоящее время во всех странах, по-видимому, склоняются к строительству новых заводов, вырабатывающих полиамидное волокно из поликапролактама, а не из полиамидов, полученных поликонденсацией диаминов и дикарбоновых кислот . Возможно, что наряду с чисто экономическими причинами в этом случае большую роль играют также повышенная мягкость и большая легкость переработки волокон из поликапролактама, так как эти волокна всегда содержат некоторое количество пластификатора в виде мономера. [c.430]

    Для получения достаточно прочных волокон необходимо, чтобы между соседними макромолекулами действовали значительные межмолекулярные силы притяжения. Это возможно только в том случае, если макромолекулы имеют линейную структуру (или при наличии разветвленной структуры боковые цепи невелики) и расположены правильно (по возможности параллельно друг другу). Для этого полимер переводят в раствор (прядильный раствор) или превращают в расплав. Это первая стадия в получении химических волокон. Второй стадией является прядение (формование) волокна продавливанием расплава или прядильного раствора через фильеру. Фильера — небольшой колпачок из высокоустойчивого материала — сплава платины с золотом, тан- [c.294]


    После плюсования краситель фиксируют обработкой паром в запарной камере в течение 1—10 мин при 100 °С или в течение 0,5—5 мин горячим воздухом при 140— 150 °С (методом термозоль при 190—215 °С). В других случаях фиксируют краситель пропусканием через проявительный раствор или посредством длительного (2—20 ч) хранения влажного материала. После фиксации окрашенный материал почти всегда необходимо тщательно промыть от остатков незафиксированного красителя. Весьма эф-, фективным является крашение крупных партий химических волокон при их изготовлении (крашение в массе, крашение нитрона в геле). При этом отпадает необходимость больших трудовых и других затрат на текстильных фабриках, резко сокращается количество сточных вод, достигается большая общая экономия. Крашение в массе проводится внесением красителя или пигмента при получении полимера или окрашиванием гранул полимера, а лучше всего — непрерывным внесением красителя в раствор или расплав полимера перед прядением волокна. [c.242]

    При получении полиэтилентерефталата с более высоким молекулярным весом (для кордной нити) поликонденсацию проводят последовательно в трех реакторах одном вертикальном и двух горизонтальных. Первый (вертикальный) реактор состоит из 3—6 камер, образуемых рядом чередующихся колец и дисков. Получение олигомера осуществляется в условиях вакуума (50 мм рт. ст.) при температуре 265°С и интенсивном перемешивании (150 об1мин). Время пребывания реакционной массы в аппарате составляет 15— 20 мин. Приведенная вязкость получаемого при этом низкомолекулярного продукта — 0,Г5—0,20. Во втором (горизонтальном) реакторе установлено 6—8 перегородок, обеспечивающих равномерное движение потока реакционной массы. Вакуум в этом реакторе —5—2 мм рт. ст., температура — 275—280 С. Полимеризация заканчивается в третьем (горизонтальном) реакторе при температуре 275—278°С в глубоком вакууме (0,1 мм рт. ст.). Равномерное продвижение потока расплава полимера через реактор осуществляется с помощью червячного питателя. Приведенная вязкость получаемого при этом полимера достигает 1,0. Расплав полимера направляется на прядение. Время от выхода полимера из последнего реактора до начала-формования волокна составляет 8— 10 мин. В этот период в полимер вводят различные добавки, а также матирующие агенты (двуокись титана) и красители. Свежесформованное волокно наматывается на бобины пли принимается в контейнеры. Предусматривается возможность превращения образующегося полимера в гранулят. [c.349]

    При формовании волокна по фильерному методу расплав стекла иа плавильной ванны поступает в приемную камеру (фидер), дном которой служит фильера. Фильеры для прядения стекловолокон представляют собой пластины из тугоплавких металлов и сплавов (например 90% платины и 10% родия, нихрома и др.), или из материала, полученного спеканием порошка карбида вольфрама с 1—20 вес.% платины или другого металла. Фильеры изготавливают и из более дешевых материалов, например керамики. В этом случае в зону отверстий керамической фильеры вставляют металлические пластины толщиной менее 1,5 мм. С помощью фильерного метода вырабатывают стекловолокно в форме нитей. Расплав продавливают через отверстия фильеры. Образовавшиеся при этом элементарные волокна замасливают, объединяют в жгут и со скоростью 4 000—5 ООО м1мин наматывают на приемное устройство.. В улучшенных конструкциях прядильных машин скорость формования достигает 6 000—9 150 м1мин. [c.383]

    При прядении из расплава полимер путем нагревания переводят в плавкое состояние и полученный расплав продавливается через фильеры, образующиеся нити затвердевают на воздухе или в атмосфере инертного газа. Полученный тем или иным способом прядения пучок волокон образует некрученую нить, которая проходит через направляющие ролики и подвергается вытягиванию для увеличения прочности волокна. Затем волокно подвергают специальной обработке для придания ему определенных физико-механических свойств, улучщающих его качество (кручение, термофиксация и т. д.). [c.219]

    Крошка высушивается в вакууме и поступает на формование волокна в бункер 1 прядильной машины (рис. VIII). К нижней части бункера примыкает плавильная головка 2. В верхней ее части находится плавильная решетка 3 — змеевик из нержавеющей стали, по трубам которого протекают пары высококипящего теплоносителя. Крошка плавится в атмосфере азота, соприкасаясь с решеткой, а расплав стекает в щели между трубами змеевика и подается прядильным насосиком 4 под давлением 30—60 ат для очистки через слой кварцевого песка 5 затем расплав поступает через фильеру 6 из нержавеющей жароупорной стали со скоростью 500—1000 м/ мин в шахту 7. Затвердевшие волокна соединяются здесь в нить, которая проходит по дискам 8 и наматывается на бобину 9, а затем подвергается кручению и одновременно вытягивается (в 3—5 раз) после этого ее промывают и высушивают. При получении штапельного капронового волокна (число отверстий в фильере больше) нити, выходящие из всех фильер одной прядильной машины (число фильер доходит до 50—150), собираются в один жгут, который вытягивается, режется на штапельки, после чего волокно промывается и высушивается. Добавление 15—20% штапельного волокна к хлопку или к шерсти перед их пряден 1ем значительно увеличивает срок службы получаемых изделий. [c.331]


    Плавильные и прядильные головки обогреваются жидким высококипящим неорганическим теплоносителем. Для получения высококачественного волокна с малым содержанием низкомолекулярных соединений (НМС) в плавильную головку подается ВОТ, имеющий температуру на несколько градусов ниже температуры формования. Расплавопровод и прядильная головка обогреваются ВОТ с заданной температурой прядения. В дальнейшем расплав по выходе из плавильной головки догревается до температуры, необходимой для формования. [c.107]

    Реакцию проводят в обогреваемом сосуде с коническим дном и особой мешалкой, выполненной в форме спирали эта мешалка предназначена для хорошего перемешивания реагентов, что особенно важно на последних стадиях поликонденсации, когда расплавленная реакционная масса становится крайне вязкой. Не должно быть побочных реакций, в результате которых может происходить разветвление цепей и поперечное сшивание (приводящее к гелеобразова-нию). После того как в сосуд для полимеризации внесен диол и нагрет до 85— 90°, в него в течение 0,5—1 часа при интенсивном перемешивании (300 об/мин) добавляют требуемое количество гексаметилендиизоцианата (97—99,5% от теоретического). Происходит экзотермическая реакция температуру расплава поддерживают при 190—195° до полного завершения реакции, о чем судят по вязкости расплава (600—900 пуаз при 190°) или по относительной вязкости раствора в ж-крезоле (1,4). Затем перемешивание прекращают и расплав выдерживают несколько минут при пониженном давлении (20—40 мм) для удаления пузырьков газа, после чего полученный полимер выдавливают азотом. Расплав полимера, пройдя через сито из металлической сетки и экструзионный вентиль, выходит в виде ленты, которую режут на куски и высушивают. Описан также метод получения моноволокон непосредственным прядением путем продавливания расплава через обогреваемые сетчатый и песчаный фильтры на пластинку фильеры (25—50 отверстий диаметром 1—2 мм). Волокна охлаждают в воде, вытягивают примерно на 300% и в дальнейшем применяют для изготовления искусственной щетины. Имеются патентные указания, что расплавленный полимер нечувствителен к действию воздуха и кислорода, так что создание инертной атмосферы при полимеризации не обязательно, хотя в описании полупроизводственного технологического процесса указывается, что над реакционной массой необходимо пропускать ток азота. Согласно другому способу получения [31], трудности, связанные с необходимостью интенсивно перемешивать реакционную массу после того, как она становится очень вязкой, избегают путем проведения начальной конденсации только с 80—90% требующегося количества диизоцианата образующийся при этом подвижный расплав низкомолекулярного полимера передают в мощный смеситель специальной конструкции, куда добавляют недостающее количество диизоцианата, и реакцию продолжают. По количеству энергии, затрачиваемой на перемешивание, оценивают вязкость расплава, что позволяет прекращать реакцию на желаемой стадии. [c.155]

    Условия в прядильной шахте изменяются от зоны к зоне так, концентрация растворителя, конечно, уменьшается от сердцевины волокна наружу и от фильеры к приемному приспособлению. Во время прядения во избежание воз-никнове1шя неравномерности волокна необходимо установить стационарные условия во всех зонах шахты. Точно так же следует строго контролировать и другие параметры—концентрацию и вязкость растворов, температуру прядильного раствора и температуру в прядильной шахте, поддерживая их в узких пределах в противном случае будет получено неравномерное волокно. Механические свойства обычно тем лучше, чем выше концентрация прядильного раствора. С увеличе1шем концентрации прядильного раствора увеличивается степ. - нь ориентации при прядении. Можно сказать, что расплав представляет собой раствор 100%-ной концентрации и прядение из расплава является при прочих равных условиях наиболее перспективным методом получения прочных волокон. Но это рассуждение справедливо лишь для очень хороших растворителей, обеспечивающих полное диспергирование и сольватацию вы-соксполимера. [c.373]


Смотреть страницы где упоминается термин Получение волокон прядением из расплава: [c.128]   
Смотреть главы в:

Волокна из синтетических полимеров -> Получение волокон прядением из расплава




ПОИСК





Смотрите так же термины и статьи:

Прядение волокон



© 2025 chem21.info Реклама на сайте