Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь водородная ем Водородная ориентирующее действие

    По мере уменьшения температуры кинетическая энергия поступательного движения молекул газа падает и при некоторой температуре она уже оказывается не в состоянии преодолеть силы межмоле-кулярных нековалентных взаимодействий и молекулы собираются вместе, образуя жидкость. Если между частицами жидкости действуют только вандерваальсовы силы, которые в некотором грубом приближении можно рассматривать как ненаправленные, то взаимное расположение молекул не играет существенной роли, и они сохраняют возможность перемещения относительно друг друга, что является основной характеристикой жидкого состояния. Если между молекулами жидкости могут образовываться водородные связи, то некоторое число молекул оказывается объединенным в ассоциаты, в пределах которых молекулы определенным образом ориентированы. Однако размеры этих ассоциатов, как правило, невелики, и они могут достаточно свободно перемещаться один относительно другого. Отдельные молекулы могут сравнительно легко выходить из состава одного ассоциата и переходить в другой. Таким образом, основная характеристика жидкости, а именно способность ее молекул перемещаться относительно друг друга без отрыва от основной массы вещества, сохраняется и в этом случае. [c.112]


    Характерной особенностью изменения интенсивности полосы поглощения свободных гидроксильных групп поверхности кремнеземов при адсорбции является значительно больщая чувствительность этой характеристики адсорбционного взаимодействия по сравнению с изменением положения этой полосы поглощения. Так, если интенсивность полосы поглощения свободных гидроксильных групп поверхности при адсорбции пиридина изменяется в 40 раз, то соответствующее изменение частоты этой полосы поглощения (3750 см- ) составляет только 20% (см. табл. 12). Изменение интенсивности полосы поглощения гидроксильных групп при межмолекулярном взаимодействии в растворах с образованием водородной связи происходит максимально в 20 раз [39]. Возрастание интенсивности полосы поглощения поверхностных гидроксильных групп кремнеземов при адсорбции много больше, чем при растворении гидроксилсодержащих молекул в соответствующих растворителях. Например, величины отношения /в//с для гидроксильных групп фенола, растворенных в бензоле и диэтиловом эфире, составляют 2,1 и 6,9 [39], а в случае адсорбции бензола и диэтилового эфира на гидроксилированной поверхности кремнезема эти величины составляют 9 и 24 соответственно (см. табл. 12). Это объясняется не только различием свойств гидроксильных групп растворенных веществ и поверхности кремнезема, но и различием в свойствах самой водородной связи вследствие ориентирующего действия на молекулу адсорбционного поля. В случае раствора молекулы более подвижны и ориентация специфически взаимодействующих звеньев в меньшей степени зависит от остальных частей молекулы. [c.185]

    Второй граничный слой воды толщиной 7—9 нм формируется в результате ориентирующего действия поверхности твердого тела и адсорбционно связанных слоев воды. Ассоциаты воды в этом слое следует рассматривать как анизотропные домены. Он характеризуется пониженной концентрацией обменных катионов, большей долей молекул воды с разорванными водородными связями. [c.64]

    В структурированной жидкости вследствие ориентирующего действия границ раздела фаз водородные связи концентрируются в плоскости, чем вызывается повышение энергии связей в 1,5 раза, а в случае действия сил гидрофобного взаимодействия (электрической поляризации молекул) эта энергия увеличивается до 18 ккал/моль. [c.96]


    Если полимер обладает структурой с чередующимися полярными и неполярными участками с резко различающимися по энергии межмолекулярными связями, то неполярная жидкость, выключая взаимодействие по участкам, связанным относительно слабым дисперсионным взаимодействием, в меньшей мере способствует разрушению структуры при измельчении, но ориентирует его именно по линии этого ослабления. Однако в этом случае, поскольку структура скреплена оставшимися более мощными, чем выключенные, дипольными и водородными связями, эффект ослабляющего действия и его направленность выражены весьма слабо. Наоборот, если жидкость способна в таком полимере ослаблять или выключать взаимодействие по полярным участкам, в том числе и водородным связям, то измельчение существенно облегчается и имеет ярко выраженную ориентацию по линии ослабленных связей. Например, в природных целлюлозных или белковых волокнах межмолекулярное взаимодействие и взаимодействие между элементами структур высшего порядка (фибриллы) в поперечном направлении осуществляются преимущественно водородными связями и в несравненно меньшей степени дипольными, дисперсионными и редкими химическими связями. В белках, кроме того, ощутимую роль в скреплении структур играют поперечные солевые ионные связи. [c.192]

    В чистой жидкости или расплаве молекулы ориентированы более или менее беспорядочно однако между соответствующими молекулярными группировками действуют те же межмолекулярные силы. Так, спектр жидкого спирта (рис. 4.6, г) почти неизменна обнаруживает наличие интенсивной межмолекулярной водородной связи полимерного типа (I) (см. [13], а также разд. 4.9). [c.140]

    Вторую зависимость (см. рис. III.26) для веществ с меньшей длиной оксиэтиленовых цепей можно объяснить действием водородных связей. С увеличением же длины оксиэтиленовых цепей молекулы ПАВ ориентированы таким образом, что все располагаются в водной части межфазной поверхности. Труднее объяснить первую зависимость (см. рис. III.25). Возможно, в этом случае молекулы, ориентированные липофильными цепями к воде, переходят в положение, когда часть гидрофильной оксиэтиленовой цепи удерживается маслом. [c.178]

    ДЛЯ их применения в качестве текстильного сырья. Эта прочность обусловлена, во-первых, длиной макромолекул, и во-вторых, их параллельной ориентацией. Макромолекулы связаны друг с другом в фибриллах или, по крайней мере в областях с параллельной ориентацией волокна (кристаллитах), водородными связями между группами НО. Эти поперечные связи по отношению к оси волокна, хотя и слабы, но многочисленны, поэтому их действие суммируется они увеличивают общую механическую прочность волокна, препятствуя скольжению макромолекул друг относительно друга. Искусственный шелк менее устойчив к растяжению, чем природное хлопковое волокно, не только потому, что его макромолекулы короче, но главным образом потому, что эти макромолекулы ориентированы параллельно в менее широких областях, чем в природном волокне. [c.297]

    Прочность полиамидов определяется действием водородной связи между цепями, наличием сильных диполей, высокой концентрацией кристаллической фазы и ориентацией кристаллитов (в растянутом состоянии). Вытяжка полимеров имеет большое техническое значение (в процессе получения волокна и пластиков), она производится прн температурах, значительно более низких, чем температура плавления. В большинстве случаев изделия из полиамидов в той или иной степени ориентированы. [c.601]

    Отсюда следует, что инородная подложка для образования зародыша льда должна обладать по крайней мере двумя факторами. Первое — это близость параметров кристаллической решетки к соответствующим параметрам льда, что создает благоприятные условия для согласованной надстройки кристалла подложки молекулами Н2О. Второе — это присутствие в молекулах вещества подложки атомов О, С1, Л и других, способных устанавливать достаточно прочные связи с атомами водорода молекул воды. Последнее не только благоприятно ориентирует движения молекул Н2О на водородные связи между собой при-объединении, но и позволяет устанавливать их и в связующем слое подложка — лед. Наряду с этими двумя факторами существенными для льдообразующего действия ядер конденсации — кристаллизации могут явиться поляризационные свойства молекул Н2О и подложек, а также и электрические заряды. [c.179]

    Сольватация тесно связана с процессом растворения. Вообще говоря, сольватация включает все типы взаимодействия между растворителем и ионами или молекулами растворенного вещества, поскольку нельзя провести никакого различия между свободными молекулами растворителя и молекулами растворителя, связанными с ионами или молекулами растворенного вещества (см. стр. 26 в работе [294]). Ионы или полярные молекулы в полярном растворителе ориентируются под действием электростатических сил, их энергия уменьшается и система становится более устойчивой. Величины энергии сольватации часто имеют тот же порядок, что и энергия ковалентных связей. Когда катионы или льюисовы кислоты сольватируются нуклеофильным растворителем, молекулы размещаются таким образом, что сольватируемые частицы окружаются оболочкой, вплоть до образования ковалентной связи электронодефицитные молекулы растворителя, не содержащие подвижного водорода (например, жидкая двуокись серы), взаимодействуют с электронодонорными анионами. В случае растворителей, содержащих подвижные, или кислые , атомы водорода, сольватация аниона может быть связана с кислотностью растворителя или его способностью образовывать водородную связь (ср. гл. 6, разд. 38,а и стр. 47 в работе [393]). Устойчивость образующихся таким образом аддуктов может быть самой различной. Вследствие энергетических затрат на образование водородных связей этот процесс понижает свободную энергию, например, аминов или амидов кислот отсутствие образования Н-связей увеличивает основность. Таким образом, становится понятным, что сила кислот и оснований в водных растворителях не всегда сравнима с этими Нле характеристиками, определенными в неводных растворителях. [c.99]


    Сложность использования целлюлозы заключается в том, что в природном состоянии в клеточных стенках растений она находится в составе нерастворимого комплекса с гемицеллюлозами и лигнином. Кроме того, за счет образования водородных связей отдельные молекулы целлюлозы определенным образом-ориентируются относительно друг друга и образуют микрофибриллы, которые в какой-то мере подоб ны кристаллам, что препятствует действию гидролитических агентов. Даже после исчерпывающего гидролиза веществ растительных клеток дрожжи, которые обычно используются при получении спирта, неспособны усваивать пятиуглеродные сахара, уроновые кислоты и фенольные соединения, образующиеся из сопутствующих целлюлозе веществ клеточных стенок растений. [c.63]

    Если аминокислотный остаток несет электростатический заряд или взаимодействует с молекулами воды как донор или акцептор водородной связи, то вокруг него образуется более плотный слой гидратационной воды, имеющий льдоподобную структуру. Дипольные моменты молекул воды в этом слое ориентированы под действием локального электростатического поля гидратируемой группы (рис. 1, Д). Ионизация карбоксильной или аминогруппы аминокислоты приводит к изменению типа гидратации от клатратного до гид-ратного, что отображается в системе водородных связей ближайшего окружения. Расчет энергии ассоциации молекул воды с заряженными центрами показал, что знак заряда [c.23]

    Далее от границы раздела ориентирующее действие твердой поверхности ослабевает и появляется переходная область — подплавленный слой, характеризующийся меньшим порядком по сравнению с водой в объеме, в результате противоположной направленности ориентирующего влияния поверхности и структуры водородных связей в объеме. Авторы считают, что в этом слое с пониженной вязкостью лежит граница скольжения. На рутиле подплавленный слой находится дальше от поверхности, чем у других оксидов, вероятно, на глубине около четырех молекулярных слоев. Приведенное взаиморасположение ионов и воды у поверхности хорошо согласуется с данными по дифференциальной емкости и другими экспериментами. [c.93]

    Общий вывод, что для транс-амидов характерно образование линейных полимеров, а для г ис-амидов — циклических димеров, был поставлен под сомнение работой Дейвиса и Томаса [502]. Они нашли, что циклические димеры имеются как в трихлорацетамиде, так и в его N-метилпроизводном. Дейвис отмечает, что тип ассоциации определяется относительной величиной свободной энергии, которая может изменяться в зависимости от других структурных факторов, нежели цис-транс-томеряя. Бейкер и Егер [118] опубликовали интересное обсуждение диэлектрических свойств некоторых твердых полиамидов. Они установили соответствие между изменениями диэлектрической постоянной и диэлектрических потерь, с одной стороны, и протяженностью и упорядоченностью сети Н-связей — с другой. Диэлектрическая постоянная и потери велики в соединениях, для которых можно допустить, что сеть плохо сформирована либо из-за неблагоприятных расстояний между амидными группами, либо из-за нарушений порядка вследствие замыкания Н-связей кроме того, величина указанных диэлектрических характеристик быстро растет с увеличением температуры. Последнее Бейкер и Егер приписывают осцилляции водородных атомов между двумя положениями равновесия на линии Н-связи. Другие механизмы диэлектрических потерь также становятся существенными при более высоких температурах, при которых Н-связи рвутся и теряется их ориентирующее действие. Бейкер и Егер показали, что соединения, образующие сильную Н-связь (НгО), разрушают сетку Н-связей и вызывают изменения диэлектрических свойств, подобные тем, которые наблюдаются при повышении температуры. Такая эквивалентность разрыва Н-связей с помощью химических и термических воздействий является типичной и была обнаружена многими экспериментальными методами. [c.27]

    Сульфонильная группа обладает сильным электроноакцепторным влиянием отчасти за счет самого атома серы, отчасти за счет атомов кислорода. Поэтому она будет оказывать дезактивирующее и л е/па-ориентирующее действие в тех случаях, когда она связана с ароматическим кольцом. Во многих отношениях сульфонильная группа оказывает то же влияние, что и карбонильная, примером чего может служить активация а-водородных атомов и стабилизация образующихся при их отрыве карбанионов. В самом деле, наличие двух или трех сульфонильных групп у СНг- или СН-группы делает молекулу почти такой же кислой, как минеральная кислота. Метиленовая группа по соседству с сульфонильной группой легко вступает в реакции типа альдольной конденсации, катализируемые основаниями. Боле того, —М-эффект сульфонильной группы приводит к тому, что аллильная двойная связь еще более легко входит в сопряжение с этой группой, чем в сопряжение с двухвалентной серой, а двойная связь, сопряженная с суль-фонилом, реагирует с нуклеофилами так же, как с а,р-непредельными карбонильными соединениями. Так, легко протекает конденсация Михаэля, а галогеноводороды, бисульфит натрия и т. п. присоединяются именно таким образом, как этого следовало ожидать. [c.434]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Гранулы крахмала состоят из концентрических слоев, в каждом из которых высоковетвистые амилопектиновые молекулы перевиты и образуют трехмерную сетку. Линейные части этих молекул ориентированы в радиальном направлении по отнощению к грануле, вторичные (водородные) связи действуют тангенциально и придают механическую жесткость этим основным молекулам. [c.78]

    Когда вода замерзает, она расширяется и поэтому лед плавает на поверхности воды. Под действием межмолекулярных сил молекулы воды во льду ориентируются в соответствии с направлениями своих диполей (см. рис. 8.21) таким образом, что каждая отдельная молекула оказывается тетраэдрически связанной с четырьмя другими молекулами диполь-дипольными взаимодействиями, а именно водородными связями. Две из этих соседних молекул связаны с атомами водорода данной молекулы, а две другие связаны с ее атомом кислорода своими атомами водорода. Такое расположение молекул воды приводит к возникновению протяженной трехмерной структуры, которая состоит из гофрированных шестичленных циклов, образованных молекулами воды занимаемый ими объем превосходит объем, занимаемый молекулами воды в жидком состоянии, чем и объясняется расширение воды при ее замерзании. При высоких давлениях описанная структура льда разрушается, и вследствие этого происходит понижение температуры его плавления. [c.143]

    Водные растворы ПВС — нестабильные системы. При хранении,растворов с концентрацией ПВС выше 1% (масс.) в них образуются ассоциаты макромолекул, что приводит к увеличению мутности и вязкости растворов. Изучение природы и поведения надмолекулярных частиц в системе ПВС — вода методами светорассеяния и спектра мутности [110] показало наличие зародышей кристаллизации даже в разбавленных растворах. В растворах 5—7%-ной концентрации образуются агрегаты со слабой связью, легко ориентирующиеся при низком напряжении сдвига и распадающиеся при высоком. При концентрации ПВС около 157о (масс.) наблюдается нарастание вязкости растворов в течение нескольких дней и образование геля, который не течет под действием малых напряжений сдвига. Процесс гелеобразования является следствием частичной кристаллизации макромолекул ПВС при их ориентации, сближении в растворе на длину нескольких сегментов и связывании межмолекулярнымй водородными [c.111]

    Линейные полимеры, цепи которых способствуют боковому взаимодействию благодаря своей молекулярной упорядоченности, но не имеют никаких групп, способных образовывать полярные или водородные связи, такие, как полиэтилен, тефлон или изотактические полиолефины, подвергаются, по-видимому, деформации не только следуя механизму молекулярного течения, но и благодаря скольжению внутри кристаллических областей. Растяжение или сдвиг в аморфном состоянии (в расплаве или растворе) вызывает ориентацию молекулярных цепей параллельно направлению действующей силы, однако последующая кристал.пизащш не усиливает эту ориентацию. Вероятнее всего, это приводит к образованию текстуры, в которой определенная часть цепей, по-видимому, ориентирована перпендикулярно направлению действия внешних сил, так что не ось с, а ось а [c.58]

    Равновесие 2К5Н- - /гОг = — ЗН + НгО сильно сдвинуто вправо, если раствор нейтрален или содержит неболь-щие количества щелочей в кислых растворах, наоборот, устойчивы сульфгидрильные группы 5Н. Связи — 5 —5 — могут быть внутримолекулярными или связывать мономерные единицы белка (например, сывороточный альбумин) в одну крупную частицу. В стабилизации формы молекулы играют роль и гидрофобные связи. Гидрофобные связи возникают за счет сил взаимодействия между углеводородными частями молекул белка. Углеводородные группы белковых частиц, находящихся в водной среде, ориентированы во внутренние зоны частицы, а гидрофильные группы (ОН, СООН) находятся на внещней стороне, которая обращена к воде. Вследствие этого внутри молекулы белка возникает углеводородное ядро, причем для того, чтобы его разрушить и перевести углеводородные группы в водную среду, надо затратить работу. Это и означает, что между углеводородными частями молекулы действуют силы притяжения. Кроме водородных, дисуль-фидных и гидрофобных связей, в поддержании формы молекулы белка принимают участие и другие факторы имеет значение возникновение солевых мостиков, действие сил Ван-дер-Ваальса особенно большое влияние оказывают молекулы воды. Сохранение определенной формы молекулы важно с биологической точки зрения. Оно обеспечивает, в частности, такое взаимное расположение групп атомов на поверхности молекулы, которое необходимо для проявления каталитической активности белка, его гормональных функций и т. д. Поэтому устойчивость глобул, так же как и многие особенности структур биологически активных молекул, не случайное свойство, а одно из средств стабилизации организма. [c.57]

    Поведение пленок кислот, поливинилбензоата и поливинилацетата, находящихся в согласии с уравнением идеальной смеси, исследовал Райс с сотр. [44—461. На электронных микрофотографиях видно, что в пленках с поливинилацетатом есть островки кислот, однако исследования давления разрушения и сжимаемости позволили авторам заключить, что пленка гомогенна. По их лшению, молекулы поливинилацетата ориентированы горизонтально, а молекулы кислот — вертикально. Давление разрушения такой смеси больше, чем в сл5гчае пленки одного ПАВ. Несмотря на то, что полимер может выдавливаться из смешанной пленки, последняя обладает повышенной стабильностью. Согласно объяснениям авторов, это является результатом действия водородных связей между карбоксильными и ацетатными группами. [c.181]

    Водородная связь — одна из наиболее важных сил, способная действовать в кристаллической решетке различных соединений. Она часто встречается в высокополимерных и так называемых клешневидных (хелатных) соединениях. Например, в высокополимерном соединении — найлоне, все молекулярные полиамидные цепи ориентированы параллельно за счет образования водородных связей между атомами кислорода и азота в группах СО и NH. Новые дан- ные указывают на то, что в некоторых видах кристаллических глобулярных протеинов содержатся внутримолекулярные водороддые связи, ответственные за скручивание пептидных цепей этих поли- меров. [c.38]

    Полярные молекулы в инертных растворителях ориентированы под действием поверхности электрода и частично ею адсорбированы из-за малой сольватирующей способности растворителя так возникают аномалии типа 3 и 4, хотя они могут появиться и за счет влияния ионов калия [355]. Чем слабее титруемая кислота, тем более основным должен быть растворитель, чтобы молекулы кислоты ассоциировались или сольватировались не анионами кислоты, а молекулами растворителя. Карбоновые кислоты средней силы дают нерегулярные кривые титрования в растворителях с основностью ниже, чем у пиридина. Благодаря хорошей сольватирующей способности амфи-нротонных растворителей достаточно добавить 1% метилового или изопропилового спиртов, чтобы предотвратить образование комплекса растворенной кислоты с ее собственным анионом. 4-Метил-2,6-дибутилфенол не ассоциируется с собственным анионом из-за пространственных препятствий. Поэтому его кривая титрования имеет обычный вид, в то время как кривая титрования 4-метил-2-бутилфенола имеет неожиданный подъем в точке полунейтрализации. Тиофенол также дает нормальную 8-образную кривую, поскольку сера, как это хорошо известно, обладает меньшей тенденцией к образованию водородных связей, чем кислород. [c.167]

    Так как в устойчивых кристаллах взаимное притяжение между частицами всегда преобладает над отталкиванием, то сближение их (до известного предела) в общем должно сопровождаться выделением энергии, т. е. делать кристалл более устойчивым. Если между частицами, составляющими кристалл, действуют лишь ненаправленные связи (ионные и металлические кристаллы), т указанный предел отвечает наибольшему заполнению объема. Эго соответствует принципу наиболее плотной упаковки. Но есля между частицами действуют направленные связи (кристаллы с ковалентной связью), то возрастание плотности упаковки повышает устойчивость кристалла лишь до тех пор, пока не начнут существенно изменяться направления валентных связей. Такие изменения требуют затраты значительных количеств энергии. Поэтому в кристаллах с ковалентной связью наиболее устойчивыми являются структуры, в которых атомы располагаются в соответствии с направлением валентностей (см. 19) или незначительно отклоняясь от этого направления, хотя бы такие структуры и не отвечали наиболее плотной упаковке. В результате принцип наиболее плотной упаковки последовательнее выдерживается в кристаллах с металлическими или ионными связями, чем в кристаллах с ковалентными связями. В кристаллах с молекулярной решеткой этот принцип тоже должен лучше соблюдаться в тех случаях, когда связи, действующие между молекулами, не ориентированы, т. е. когда отсутствуйт водородные связи и не происходит значительного междипольного взаимодействия. [c.200]


Смотреть страницы где упоминается термин Связь водородная ем Водородная ориентирующее действие: [c.88]    [c.14]    [c.249]    [c.410]    [c.480]    [c.501]    [c.319]    [c.59]    [c.534]    [c.473]    [c.473]    [c.85]    [c.14]    [c.159]   
Теоретические основы органической химии Том 2 (1958) -- [ c.526 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2024 chem21.info Реклама на сайте