Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппаратура очистки коксового газа от сероводорода

    Растворы NH3, как поглотитель H S, используются довольно редко, но представляют интерес вследствие нечувствительности к ряду примесей в газе ( OS, Sg, H N и др.), а также возможности селективной абсорбции сероводорода в присутствии СОа. Метод наиболее пригоден для очистки коксового газа, поскольку необходимый для процесса NH3 в этом случае абсорбируется из газа одновременно с HjS [31. Недостатки поглотителя—низкая степень улавливания HjS (70—80%), коррозия аппаратуры и летучесть NH3. [c.682]


    Дальнейшая очистка коксового газа заключается в удалении и ИСК. Оба эти соединения чрезвычайно ядовиты. Содержание сероводорода в воздухе в количестве 0,1 % смертельно для человека. Сероводород и цианистый водород в присутствии влаги оказывают интенсивное корродирующее действие на стальную аппаратуру. [c.170]

    В процессе очистки коксового газа от ароматических соединений в поглотительном масле постепенно накапливаются продукты взаимодействия масла с такими компонентами газа, как кислород, сероводород, непредельные соединения. Эти продукты склонны к полимеризации и образованию осадков на поверхности аппаратуры, в результате чего ухудшается извлечение бензольных углеводородов. Во избежание этого нежелательного явления примерно 1% находящегося в системе циркуляции масла непрерывно выводят на регенерацию. Для этого масло нагревают до 300—310°С и в ректификационной колонне в присутствии большого количества водяного пара отгоняют очищенное масло, которое возвращают в цикл абсорбции бензольных углеводородов, а отделившиеся полимеры направляют в сборник каменноугольной смолы. [c.143]

    Очистка коксового газа от сероводорода диктуется, с одной стороны, целесообразностью использования в качестве товарного продукта больших количеств серы, содержащейся в виде сероводорода в газе, и, с другой стороны, спецификой применения газа./Коксовый газ применяется в основном в металлургическом производстве — для нагрева мартеновских печей и печей прокатных цехов, а также для химических синтезов — преимущественно для синтеза аммиака. Выделение сероводорода из коксового газа позволяет сократить продолжительность плавки в мартеновских печах и улучшить качество стали, уменьшив содержание серы в металле. Газ, применяемый для синтеза аммиака, должен быть совершенно свободен от сероводорода, так как последний является ядом, отравляющим катализаторы кроме того, его присутствие недопустимо в разделительной аппаратуре коксового газа. [c.280]

    Сероводород НгЗ и цианистый водород НСЫ являются нежелательными примесями в коксовом газе. Оба эти соединения чрезвычайно ядовиты. Например, содержание сероводорода в воздухе в количестве 0,1% смертельно. Сероводород и цианистый водород в присутствии влаги оказывают корродирующее действие на железную аппаратуру. Специфика применения коксового газа для синтеза аммиака и для обогрева мартеновских печей также требует очистки коксового газа от сероводорода. Коксовый газ, предназначенный для коммунально-бытового потребления должен [c.101]


    Вьщелению химических веществ из коксового газа предшествуют операции охлаждения, осушки и очистки от вредных соединений. Для переработки газ должен быть охлажден до температуры 25—35°С и очищен от смолы и воды. Это объясняется следующими обстоятельствами. Низкая температура является оптимальной при улавливании из газа аммиака, бензольных углеводородов и сероводорода. Аммиак хорошо растворяется в воде, причем при понижении температуры воды растворимость улучшается. Присутствие в газе паров смолы и воды приводит к загрязнению аппаратуры и отложению конденсата в газопроводах. Пары смолы снижают поглотительную способность масла, используемого для абсорбции бензольных углеводородов из газа, и ухудшают качество получаемого сульфата аммония. Охлаждение газа резко снижает его объем и тем самым способствует уменьшению расхода энергии на перемещение газа. [c.164]

    Регенерированный раствор снова поступает в скруббер на улавливание сероводорода нз коксового газа Образовавшаяся сера флотируется с образованием серной пены, содержащей до 100 г/л серы Процесс регенерации очень чувствителен к различным примесям, которые попадают в поглотительный раствор из газа остатки смолы, масел, снижают скорость регенерации, ухудшают флотацию серы, способствуют ее агломерации и оседанию на насадке, в аппаратуре и трубопроводах Это снижает степень использования воздуха Тщательная очистка газа от примесеи осуществляется в электрофильтре, установленном перед серным скруббером Для ускорения процесса регенерации рабочего рас [c.280]

    Остаточный сероводород и нафталин в случае последующей химической переработки коксового газа на азотнотуковых заводах извлекаются на этих же заводах из газа в специальной аппаратуре. Для полного удаления сероводорода обычно применяется метод сухой очистки посредством болотной руды, хотя возможна и глубокая очистка от сероводорода путем введения второй ступени мокрой очистки (поташной либо мышьяково-содовой). Полное удаление нафталина достигается промывкой обратного коксового газа нефтяным поглотительным [c.32]

    В естественном газе иногда, в газах нефтепереработки чаще, а в коксовом газе всегда находится сероводород и органические сернистые соединения, главным образом меркаптаны. В исключительных случаях содержание сероводорода в газах доходит до 16% по объему. Содержание органических сернистых соединений невелико и выражается в сотых долях процента. Неядовитым признается газ, содержащий сероводорода не больше 0,001% по объему. Это обстоятельство, а также разъедающее действие сероводорода на металлическую аппаратуру и более всего отравляющее действие на различные катализаторы заставляют проводить очистку как первую операцию обработки газов. [c.53]

    Отравление катализатора. Платиновые катализаторы чувствительны к действию ряда примесей, которые могут содержаться в аммиаке и в воздухе. Воздух на химических заводах часто бывает загрязнен сернистыми соединениями, фосфористым водородом, содержит много пыли. Фосфористый водород отравляет катализатор необратимо при очень малом содержании его в газовой смеси (порядка 0,00001%), сероводород — менее сильный яд обратимого действия. Синтетический аммиак иногда содержит взвешенные частицы катализаторной пыли, увлеченной газом из колонн синтеза аммиака. Коксовый аммиак содержит много вредных для данного процесса загрязнений, что и послужило основной причиной отказа от его применения для производства азотной кислоты. А.ммиак, воздух и их смеси по пути к контактному аппарату могут загрязняться смазочными маслами при сжатии газа в компрессорах и насосах, и мелкими частицами окислов железа (ржавчины), образующихся на стальных стенках газопроводов и аппаратуры. Все перечисленные вещества отравляют катализатор или, оседая на его поверхности, снижают активность и избирательные свойства. Указанный выше максимальный выход окиси азота на платиновых катализаторах получается только при условии работы на чистых аммиаке и воздухе. Поэтому необходимо исключить возможность отравления катализатора и загрязнения его. Это достигается применением синтетического аммиака и забором из атмосферы чистого воздуха, а также надлежащей очисткой газовой смеси и изготовлением всей коммуникации и аппаратуры до контактного аппарата не из стали, а из алюминия. [c.345]

    Водород по сравнению с другим-и компонентами коксового газа имеет более нивкую темпера1туру конденсации — 262,7° С, азот —195° С, поэтому при глубоком охлаждении коксового паза удается сконденоировать все компоненты, оставляя водорсд в газовой фазе. Так как коксовый газ имеет в своем составе серу и некоторые другие примеси, которые при охлаждении переходят в твердое состояние я могут закупорить аппаратуру (углекисл ота, сероводород), то газ предварительно подвергается очистке от серы и СО2. [c.190]


    Очистка от сероводорода. Присутствие сероводорода в коксовом газе вызывает усиле1П1ую коррозию аппаратуры предварительного и глубокого охлаждения и компрессоров для сжатия газа. При сжатии газа, содержащего Нг5, поршневыми компрессорами масло в цилиндрах компрессоров теряет смазочные свойства, в результате чего поверхность цилиндров обнажается и они подвергаются коррозии под действием сероводорода. [c.15]

    В гловерной кислоте имеются примеси свинца, железа, мыщь-яка и окислов азота. В кислоте, получаемой из сероводорода коксового газа методом мокрого катализа, также содержатся окислы азота, при этом иногда в значительном количестве (до 0,3%). Источником окислов азота в серной кислоте, получаемой по этому методу, является цианистый водород, содержащийся в поступающем на установку мокрого катализа сероводородном газе. Если коксовый газ передается для синтеза аммиака, содержание окислов азота имеет очень большое значение. В разделительной аппаратуре завода синтеза аммиака эти окислы образуют нитросмолки, легко взрывающиеся и представляющие поэтому большую опасность. При сатураторном процессе содержащиеся в кислоте окислы азота выдуваются в газ и при известных концентрациях делают его непригодным для передачи заводам синтеза аммиака. В связи с этим были разработаны специальные методы для очистки (денитрации) как серной кислоты, так и газа, содержащего окислы азота. На Макеевском коксохимическом заводе на установке мокрого катализа А. П. Сергеев применил двухступенчатый метод дозирования воздуха при сжигании сероводородного газа вместо обычно применяемого одноступенчатого дозирования. Одновременно печь длй сжигания сероводородного газа была экранирована, чтобы снизить температуру топочных газов. После отработки режима сжигания сероводородного газа в экранированной печи удалось получить серную кислоту, практически свободную от окислов азота. [c.156]


Смотреть страницы где упоминается термин Аппаратура очистки коксового газа от сероводорода: [c.138]    [c.278]    [c.73]   
Смотреть главы в:

Справочник коксохимика Т 3 -> Аппаратура очистки коксового газа от сероводорода




ПОИСК





Смотрите так же термины и статьи:

Аппаратура газов

КОКСОВЫЙ очистка

Очистка газов Очистка газа от сероводорода

Очистка газов от сероводорода

Очистка коксового газа

Сероводород в газах



© 2025 chem21.info Реклама на сайте