Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

КОКСОВЫЙ очистка

    Природные растворимые соли встречаются в виде солевых залежей или естественных растворов (рассолы, рапы) озер, морей и подземных источников. Основные составляющие солевых залежей или рапы соляных озер хлорид натрия, сульфат натрия, хлориды и сульфаты калия, магния и кальция, соли брома, бора, карбонаты (природная сода). Советский Союз обладает мощными месторождениями ряда природных солей. В СССР имеется более половины разведанных мировых запасов калийных солей (60%) и огромные ресурсы природного и коксового газа для получения азотнокислых и аммиачных солей (азотных удобрений). В СССР есть большое количество соляных озер, рапа которых служит источником для получения солей натрия, магния, кальция, а также соединений брома, бора и др. Основными методами эксплуатацни твердых солевых отложений являются горные разработки в копях и подземное выщелачивание. Добычу соли в копях ведут открытым или подземным способом в зависимости от глубины залегания пласта. Таким путем добывают каменную соль, сульфат натрия (тенардит), природные соли калия и магния (сильвинит, карналлит) и т. д. Подземное выщелачивание является способом добычи солей (главным образом поваренной соли) в виде рассола. Этот метод удобен, когда поваренная соль должна применяться в растворенном виде — для производства кальцинированной соды, хлора и едкого натра и т. п. Подземное выщелачивание ведут, размывая пласт водой, накачиваемой в него через буровые скважины. Естественные рассолы образуются в результате растворения пластов соли подпочвенными водами. Добыча естественных рассолов производится откачиванием через буровые скважины при помощи глубинных насосов или сжатого воздуха (эрлифт). Естественные растворы поваренной соли, используемые как сырье для содовых и хлорных заводов, донасыщают каменной солью в резервуарах-сатураторах и подвергают очистке. Иногда естественные рассолы [c.140]


    Сжигание сероводорода. Сероводород является составляющей продукции очистки газов (генераторных, коксовых, нефтепереработки, природных и т. д.). В промышленных печах его сжигают в виде сероводородного газа для получения диоксида серы. [c.38]

    Углеводородные газы (природные, попутные, коксовый) содержат примеси — сернистые соединения, способные отравлять катализаторы, вызывать коррозию и загрязнение аппаратуры. Одной из первых стадий переработки газов для синтеза аммиака является очистка от сернистых соединений. В промышленности применяют несколько способов очистки газа от сернистых соединений абсорбционный, мышьяково-содовый, сухой очистки активным углем, каталитический, очистки поглотителями на основе окиси цинка. [c.46]

    Отмечены случаи разрушения поршневых компрессоров для коксового газа в результате перегрузок механизмов, вызванных отложениями смол в цилиндрах и поршнях, разрушения аппаратов и трубопроводов в результате ограниченной проходимости газов и жидкостей и др. Большая часть трудоемких газоопасных работ в химических и нефтехимических производствах связана с очисткой аппаратуры от химических отложений и осадков. Так, на одном из заводов синтетического каучука на очистку аппаратуры от отложений ежегодно затрачивают около 10 ООО чел-ч. Причем очистка является газоопасной работой, так как связана с пребыванием людей внутри закрытых сосудов, а это не исключает несчастные случаи. [c.295]

    Имеются указания [272, 311—314] о возможности применения азеотропной ректификации для выделения и очистки стирола. Стирол высокой степени чистоты можно получить путем азеотропной ректификации узких фракций, выделяемых из смесей, образующихся в коксовых печах при производстве водяного газа или при крекинге и риформинге нефтяных масел. В качестве разделяющих агентов могут применяться метиловый эфир этиленгликоля [272, 311—313], метиллактат, этиллактат [311], многоатомные спирты [312], а также жирные кислоты Сг—С4, особенно уксусная [314]. В процессе азеотропной ректификации стирол остается в кубе, а в виде азеотропов отгоняются более насыщенные углеводороды. Во избежание полимеризации стирола процесс проводится под вакуумом. [c.280]

    Мероприятия, рекомендуемые для предотвращения подобных взрывов, основаны на контроле накопления окислов азота в аппаратуре низкотемпературного блока, поскольку полностью удалить окислы азота из промываемого газа не представляется возможным. Установлена максимально допустимая норма накопления окислов азота в аппаратуре низкотемпературного блока. В аппаратах типа КР-32 содержание окислов азота, определяемое перманганатным методом, не должно превышать 5 кг. Если расчетное количество окислов азота в аппаратуре достигает 5 кг, то блок должен быть остановлен на отогрев и промывку. Количество накопившихся в аппаратуре окислов азота во многих случаях определяют по их содержанию в газе и расходу через низкотемпературный блок. Такая методика определения количества окислов азота, накапливающихся в аппаратуре, весьма несовершенна, так как анализы проводятся два раза в смену, и не исключена возможность залпового поступления больших количеств окислов азота в периоды между отборами проб газа. Поэтому для повышения безопасности процесса очистки конвертированного и коксового газа необходим непрерывный автоматический контроль содержания окислов азота с записью результатов на диаграмме. [c.23]


    Коксовые камеры переключаются каждые 24 часа для пропарки, охлаждения и очистки от кокса. Для гидравлической резки кокса применяется вода под давлением 105 ат. Размеры каждой камеры коксования — высота 24 м, диаметр 5 м. Выходящие сверху испарителя пары являются сырьем реактора секции каталитического крекинга. В реактор поступает смесь выделенных из нефти прямогонных дестиллатов, а также парообразных продуктов и газов, получаемых при коксовании гудрона. [c.43]

    Продолжительность полного цикла работы каждой коксовой камеры 48 час., из них 24 часа на потоке сырья и 24 часа на операциях охлаждения (водяным паром и водой), гидравлической резки и выгрузки кокса и подогрева. В период подогрева паро-жидкая загрузка поступает из камеры коксования в ректификационную колонну 1 через сепаратор 5. Сырье загружается одновременно в две камеры коксования. Поочередным включением камер после очистки их от кокса и прогрева достигается непрерывность работы установки в целом. Камеры снаружи изолированы и работают под внутренним давлением 1,76 ати. [c.67]

    Смешанные топлива. Нефтеперегонные заводы часто используют как топливо отходы собственного производства. Это обычно сернокислотные осадки операций очистки, нефтяные эмульсии, асфальты и коксовые продукты [112—115]. При их использовании обычно возникают различные технические трудности. [c.483]

    Применение адсорбционной очистки еще больше повышает выходы. Обращает на себя внимание значительное улучшение цвета вырабатываемого продукта и снижение его коксового числа. [c.156]

    При эксплуатации воздушного компрессора типа ДВУ-20-6/220 в цехе разделения воздуха произошел разрыв холодильника четвертой ступени. Причина аварии — масло К-28, способное выде- лять горючие и взрывоопасные газы. В производстве аммиака отмечен случай разрушения компрессора типа ВТБК-ЮОО вследствие перегрузки механизма движения. Причина аварии — осмоле-ние внутренних торцов цилиндра и поршня компрессора, поскольку очистка коксового газа от смол была неудовлетворительной. [c.180]

    Увеличивается объем каталитического крекинга, включая каталитическую очистку до 12% от мощности установок первичной перегонки и вместе с тем весь этот узел взамен прямогонных керосино-газойлевы фракций переводится на вторичное сырье, обеспечиваемое за счет вакуумных отгонов и коксового дистиллята. [c.180]

    Сообщается об очистке сырого бензола под давлением коксового газа [c.51]

    Конверсия метана коксового газа. Получение СО-водородной смеси на базе коксового газа может осуществляться высокотемпературной либо каталитической конверсией содержащегося в нем метана. Коксовый газ, очищенный от нафталина, поступает на очистку от сероводорода (моноэтаноламиновая или мышьяковосодовая), затем освобождается от тяжелых углеводородов в угольных фильтрах и направляется в конверторы, заполненные железохромовым катализатором, где при температуре 400° С сероорганические соединения конвертируются до сероводорода. Последний удаляется из газа на специальных установках. [c.16]

    Колчедан всех видов, природная сера и сера, получаемая из технологических газов нефтепереработки, руд цветных металлов и природного газа, транспортабельны, тогда как отходящие сернистые газы цветной металлургии и сероводород, извлекаемый при очистке природного газа, нефтепродуктов и коксового газа, нетранспортабельны и должны перерабатываться там, где они образуются. Целесообразность первоочередного использования серосодержащих газов определяет ся экономичностью и необходимостью охраны природы от воздействия агрессивных сернистых соединений. [c.23]

    Так как температура металла куба на 75—100 °С выше средней температуры сырья, то в случае отсутствия турбулентного движения коксуемой жидкости на обогреваемой внутренней поверхности куба может преждевременно образоваться коксовая корочка, ухудшающая теплообмен. Для предотвращения выпадения механических примесей был предложен способ подачи водяного пара в нижнюю часть куба одновременно с началом его обогрева [43]. Однако это не применяется из-за технических трудностей при удалении из коксового пирога паровых маточников и их очистке. Наиболее эффективен интенсивный обогрев кубов, который приводит к улучшению теплопередачи. [c.74]

    Попадающие в реактор вместе с газом уголь и другие твердые компоненты сепарируются в циклоне, расположенном внутри реактора-газификатора, и возвращаются в псевдоожиженный слой. Коксовый остаток непрерывно выводится из конического копильника, пристроенного к днищу реактора-газификатора, и гасится питающей котел-утилизатор водой получаемый таким образом пар, необходимый для процесса, направляется в пароперегреватель, работающий за счет тепла колошникового газа. Последний в дальнейшем охлаждается в угольной сушилке и в случае необходимости гасится перед подачей его в отделение очистки и метанизации. [c.166]

    Следовательно, при очистке серной кислотой даже худшего вида вакуумного газойля материальный баланс каталитического крекинга улучшается. Кроме того, улучшение соотношения выходов кокса и светлых нефтепродуктов делает такую очистку особенно эффективной на действующих установках, где производительность и глубина каталитического крекинга лимитируются коксовой нагрузкой регенераторов. Установлено, что улучшение материального баланса и качества продуктов крекинга достигается при очистке кислотой концентрацией 95% и расходе 2 объемн. %  [c.191]


    Мет-х и без него было показано на рис. 93. Данные о выходах отдельных продуктов при работе по обоим вариантам представлены на рис. 94. Как это видно, при работе по основному варианту выход кокса с увеличением длительности опыта увеличивается из-за меньшего количества добавляемого свежего катализатора на единицу перерабатываемого сырья (0,88 кг/м на пилотной установке и 1,38 кг/м на промышленной установке, из которой был отобран равновесный катализатор). Кроме того, сырье пилотной установки содержало несколько больше железа, чем среднее сырье промышленной установки. При работе по методу Мет-х выход кокса с течением времени уменьшается. Через 1 месяц работы катализатора коксовый фактор его в системе с очисткой раза в два меньше, чем в системе без очистки. Данные о выходе легких углеводородов при работе по обоим вариантам (при степени превращения 50%) приведены ниже  [c.231]

    Если к водяному газу примешивается коксовый газ, то при тонкой сероочистке часто возникают значительные трудности, связанные с тем, что в коксовом газе содержатся небольшие количества смолы и других конденсирующихся примесей, которые частично остаются неразложен-ными, несмотря на то, что они в реакторе проходят через раскаленный слой топлива. Сказанное выше относится особенно к серусодержащим соединениям, которые, оставаясь неразложенными, несмотря на крайне незначительную концентрацию (несколько сотых грамма на м ), настолько затрудняют работу сероочистки, что иногда не представляется возможным обеспечить необходимую глубину очистки синтез-газа от органической серы. [c.82]

    Смешанный поток поступает в сепаратор 12 для очистки от коксовой пыли, образующейся в процессе деструктивной переработки сырья в зоне реакции. Отсепарированный поток поступает в систему теплообменников-холодильников 13, а затем в сепаратор 14. Часть жидкого потока возвраш,ается в продуктовый поток, большая же часть направляется в колонну 19. Крекинг-газы подаются на газоразделение в колонны 17 и 18. Природный газ подавляет реакцию коксообразования и повышает турбулизацию потока, что способствует снижению коксообразования в процессе термического крекинга. Метакрекинг позволил повысить октановое число прямогонного бензина с 68—64 до 72—76. [c.217]

    Аварии, связанные с загазованностью атмосферы производственных помещений взрывоопасными и токсичными газами, происходили при разрыве в результате коррозии трубопроводов между холодильниками и маслоотделителями на газовых компрессорах, маслоотделителей и цилиндров вследствие их низкого качества изготовления, а также в результате проскока газа через фланцевые соединения и сварные швы трубопроводов и сосудов. Так, в производстве аммиака разорвался газопровод нагнетания первой ступени поршневого компрессора фирмы Сюрт , предназначенного для сжатия и подачи коксового газа в отделение очистки цеха синтеза аммиака и далее в агрегаты разделения коксового газа. Авария произошла на участке между компрессором и холодильником нагнетательного газопровода первой ступени компрессора. Причина аварии — цлохое качество сварного шва газопровода. [c.181]

    Сопоставление показателей каталитической и высокотемпературной конверсии метана коксового газа показало, что процесс высокотемпературной конверспи не требует предварительной очистки коксового газа от сероорганических соединений. При этом отпадает необходимость строительства отделения каталитического разложения органической серы. Однако высокотемпературная конверсия требует повыИхенного расхода исходного коксового газа и кислорода, а также увеличения каптнталовложений по стадии разделения воздуха. В результате расчетов было установлено, что величина текущих затрат по схеме с высокотемпературной конверсией примерно на 5% выше, чем по схеме с каталитической конверсией. [c.16]

    Как известно, конвертированный и коксовый газ содержит взрывоопасные и токсичные вещества. Растворы моноэтаноламина и метанола, применяемые для очистки газов, токсичны, а жидкий азот при попадании на кол<у вызывает обмораживание. Кроме того, процессы очистки идут при высоких и очень низких температурах. Возможность возникновения пожара или взрыва, отравления или получения ожога может создаваться при нарушениях технологического режима, подсосе воздуха в газ или в результате образования в производственных помещениях взрывоопасных и отравляющих газовоздушных смесей при прорыве газов и жидкостей через неплотности оборудования, коммуникаций и запорной арматуры. Поэтому герметичность оборудования и трубопроводов отделения очистки должны проверяться ежесменно. Запрещается подтягивать крепежные детали фланцевых соединений для ликвидации пропусков газов и жидкостей, если система находится под избыточным давлением. Давление следует повышать и снижать постепенно, по установленному для данного оборудования регламенту. Инертный газ, применяемый для продувок, должен содержать не более 3% (об.) кислорода и совершенно не иметь горючих примесей. Перед продувкой газ должен подвергаться анализу. [c.52]

    Очистка смазочных масел, петролатумов и парафина. Вероятно, наиболее важным промышленным применением адсорбционной очистки является освещенное временем использование адсорбентов для удаления сильно окрашенных веществ смолистого характера из высококипящих нефтепродуктов, преимущественно смазочных масел, парафина и петролатумов. Тот факт, что нефтяные фракции при перколяции через адсорбент, такой как фуллерова земля, разделяются на части, различные не только по цвету, но также и по удельному весу, вязкости и другим свойствам, был, вероятно, хорошо известен в нефтепереработке и раньше, но впервые был отмечен в печати Дэем [37 —39 ]. После этого многие исследователи обратили внимание на это свойство, например, Кауфман [40], фильтруя концентрированное цилиндровое масло через фуллерову землю, обнаружил, что первая порция выходящего продукта имела более низкую плотность и вязкость и намного более низкое коксовое число по ASTM, чем последующие фракции, свойства которых постепенно приближались к свойствам исходного сырья. [c.270]

    При очистке газов пиролиза от сажи в коксовых фильтрах с движущимся слоем кокса основным условием нормальной работы этих аппаратов является промывка кокса и поддержание сопротивления фильтра на заданном уровне. В случае забивки аппарата сажей мо-л<ет возрасти давление, что нарушит нормальную работу реактора и даже приведет к аварии. При поломке механизма, выдающего кокс из аппарата, сажеочистка должна быть остановлена. [c.99]

    В составе силикат-глыбы и готового катализатора и адсорбента содержится свыше 70% окиси кремния. Пыль, образующаяся в сырьевом отделении при разгрузке, хранении и размоле силикат-глыбы, в сушильно-прокалочном отделении и на складе готовой продукцпи, представляет собой большую опасность для организма, чем всякая другая пыль, например коксовая, гумбриновая или сульфатная. Применение устройств по герметизации аппаратуры и осуществление механизации процессов является одним из основных мероприятий по технике безопасности и охране труда в производстве алюмосиликатных катализаторов, адсорбентов и силикагелей. Мероприятия по борьбе с пылевыделением на разных участках технологического процесса производства катализаторов и адсорбентов в основном сводятся к следующему. Перед разгрузкой вагонов или платформ с силикат-глыбой последнюю обрызгивают водой из резинового шланга с лейкой на конце. Увлажняют силикат-глыбу и на площадке дробилки перед началом дробления. Увлажнение силикат-глыбы почти полностью ликвидирует основные очаги выделения силикатной пыли. В настоящее время на ряде катализаторных фабрпк очистку катализаторной крошки и пыли из-под конвейерных лент проводят методом вытяжной венти.пяции, который позволяет проводить уборку одному рабочему быстро и не вдыхая пыли. При транспортировании вертикальными и наклонными элеваторами образующуюся силикатную пыль отсасывают вентилятором действующего дымососа. В прокалочном отделении крошку и мелочь собирают в специальный монжус, из которого содержимое сплошным потоком транспортируется сжатым воздухом в бункер аэробильной мельницы. [c.163]

    Газ из реактора-газификатора,, собираемый вверху, используется в качестве рециркулянта для псевдоожижения коксового остатка в камере для удаления летучих, из которой сырой газ выводится и направляется на очистку и метанизацию. [c.165]

    Угольная шихта, предварительно измельчаемая до О—10 или О—15 мм, складируется в башню влажной шихты, которую предпочтительнее устанавливать над печами на случай, если изменение вхнабжении углями вынудит перейти на загрузку обычной влажной шихты. Уголь забирается под башней конвейерами и подается в небольшой промежуточный бункер, питающий подогреватели. Количество подогревателей с дроблением зависит от производственных мощностей коксового цеха, но их должно быть не менее двух с тем, чтобы был определенный резерв. Обрабатываемый уголь пневматическим способом подается в бункер для подогретого угля. В этом бункере в целях безопасности поддерживается инертная среда. Практически предусматривается отбирать небольшую часть дымовых газов, выходящих из комплекса подогревателя с дроблением (содержащих лишь незначительные количества кислорода), и вдувать их в бункер после того, как их подвергнут неглубокой мокрой очистке. [c.467]

    Разделение коксового газа. Метод фракционированной конденсации с применением глубокого охлаждения используют для разделения коксового газа, а также для очистки конвертированного газа от оксида углерода после парокислородной конверсии метана. Разделение коксового газа конденсацией его компонентов служит одним из методов получения водорода или азотоводородной смеси. Попутно выделяют этиленовую и метановую фракции, а также фракцию оксида углерода. Эти побочные продукты служат сырьем для органического синтеза. [c.77]

    А д с о р б ционный метод — один из наиболееэффективных и доступных методов глубокой очистки (доочисткиУ сточных вод от растворенных органических вешеств. Сорбентами могут служить мелкодисперсные вешества с развитой поверхностью — зола, опилки, торф, глины, коксовая мелочь. Наиболее эффективные сорбенты— активные угли различных марок. Адсорбцию производят пе- [c.248]


Смотреть страницы где упоминается термин КОКСОВЫЙ очистка: [c.228]    [c.495]    [c.414]    [c.450]    [c.217]    [c.258]    [c.259]    [c.134]    [c.210]    [c.100]    [c.226]    [c.93]    [c.146]    [c.147]    [c.185]    [c.239]    [c.200]    [c.200]    [c.19]   
Химический энциклопедический словарь (1983) -- [ c.114 ]




ПОИСК





Смотрите так же термины и статьи:

Автоматическое регулирование режима очистки коксового газа от сероводорода и получения серной кислоты

Аппаратура очистки коксового газа от сероводорода

Вентури для очистки коксового газа

Динамика роста очистки коксового газа, производства серы и серной кислоты на коксохимических предприятиях СССР

Коксовый газ очистка от нафталина

Коксовый газ очистка от сернистых соединений

Коксовый газ, очистка от окислов

Коксовый газ, очистка от окислов азота

Коксовый гаэ адсорбционная очистка

Коксовый гаэ окислительная очистка

Коксовых печей газ очистка

Конденсация и улавливание химических продуктов коксования. ЗУ Применение коксового газа и его очистка

Краткие сообщения Севастьянов В. Н., Блинов Ю. А. Совершенствование технологии очистки коксового газа от сероводорода

МЭА-очистки очистка коксового газа

Мышьяково-щелочные методы очистки коксового газа от сероводорода

Очистка воды от коксовой мелочи

Очистка газа воздуха коксового газа

Очистка газов коксового

Очистка коксового газа

Очистка коксового газа от аммиака

Очистка коксового газа от нафталина для

Очистка коксового газа от нафталина для азотно-туковых заводов III

Очистка коксового газа от нафталина для бытового потребления

Очистка коксового газа от нафталина и цианистого водорода

Очистка коксового газа от нафталина наладка распределение серы в продуктах коксования на заводах

Очистка коксового газа от нафталина оборудование и аппаратура

Очистка коксового газа от нафталина производство серы и серной кислоты динамика

Очистка коксового газа от нафталина технико-экономические показатели

Очистка коксового газа от нафталина, наладка технологического режима

Очистка коксового газа от нафталина, наладка технологического режима роданистого натрия

Очистка коксового газа от нафталина, цианистого водорода и сероводорода

Очистка коксового газа от нафталина, цианистого водорода и сероводорода Очистка коксового газа от нафталина

Очистка коксового газа от нафталина. Осушка и передача на дальнее расстояние

Очистка коксового газа от сероводорода

Очистка коксового газа от сероводорода и цианистого водорода

Очистка коксового газа от сероводорода по аммиачному методу

Очистка коксового газа от сероводорода по вакуум-карбонатному методу

Очистка коксового газа от сероводорода по мышьяково-содовому методу

Очистка коксового газа от сероводорода под давлением

Очистка коксового газа от смолы в электрофильтрах

Очистка коксового газа от туманообразной смолы

Очистка коксового газа от цианистого водорода

Очистка коксового газа от цианистого водорода с получением роданистого аммония III

Очистка коксового газа от цианистого водорода с получением роданистого натрия

Очистка коксового газа, передаваемого другим потребителям

Очистка коксового, генераторного и других газов от смол, маI сел и пыли

Очистка коксового, генераторного и других газов от смол, масел и пыли

Очистка саза коксового

Получение коксового газа и его очистка

Предпосылки развития очистки коксового газа

Расходные коэффициенты процесса очистки коксового газа

Содержание в коксовом газе нафталина и влаги. Нормы очистки и осушки

Содержание сероводорода в коксовом газе. Свойства сероводорода. Нормы очистки

Содовый и вакуум-содовый методы очистки коксового газа от сероводорода

Технико-экономические показатели очистки коксового газа и производства серы и серной кислоты из сероводорода коксового газа

Тонкая очистка газов коксового

Экономические показатели процесса очистки коксового газа от сероводорода с получением серы и серной кислоты

Электрические фильтры для очистки коксового газа от смолы



© 2025 chem21.info Реклама на сайте