Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяка галогениды

    На практике в качестве промежуточных соединений в рассматриваемом галогенидном методе используют летучие галоге-ниды, под которыми условно подразумевают галогениды, имеющие давление насыщенного пара при 500 К более 10 Па, и для которых разработаны достаточно эффективные методы очистки. Из рассмотрения свойств галогенидов элементов периодической системы следует, что возможности галогенидного метода достаточно высоки (рис. 1). Действительно, как видно из рис. 1, летучие галогениды имеют более чем 20 элементов, в то время как галогенидный метод используется для глубокой очистки лишь некоторых из них (бор, галлий, олово, мышьяк, сурьма, висмут, молибден, вольфрам). Расширению возможностей галогенидного метода может способствовать и более широкое использование реакций термораспада летучих галогенидов (иодидов). Однако следует иметь в виду, что при повышенных температурах, обычно характерных для процесса термораспада, возрастает веро- [c.12]


    Коллоидные частицы видимы под ультрамикроскопом, истинные растворы под ультрамикроскопом совершенно прозрачны. Коллоидные частицы проходят через бумажные фильтры и могут быть задержаны пергаментной перегородкой или мембраной из коллодия. Коллоидные растворы устойчивы, так как их частицы несут заряды. Наличие зарядов у коллоидных частиц противодействует их соединению в более крупные агрегаты, поскольку они отталкиваются друг от друга. Коллоидные частицы несут положительные заряды (гидроксиды алюминия, хрома, железа и др.) или отрицательные (сульфиды мышьяка, галогениды серебра и др.). [c.141]

    Все известные галогениды элементов подгруппы мышьяка способны образовывать и ацидокомплексы, и катионные комплексы. Для тригалогенидов более характерны катионные комплексы, которые можно рассматривать как продукты присоединения к ЭГз нейтральных молекул, имеющих неподеленные электронные пары, например [Аз(КНз)4]С1з и т.д. Кроме того, они образуют и ацидокомплексы при взаимодействии с галогенидами активных металлов  [c.424]

    Сухое озоление заключается в прокаливании образца при 500-550 °С в муфельной печи до постоянной массы. Однако при этом весьма велика вероятность потерь ряда компонентов летучих соединений некоторых галогенидов, фосфора, мышьяка, серы, ртути, кадмия и др. Некоторые элементы образуют при прокаливании стойкие оксиды, не растворяющиеся затем в кислотах. Известны органические соединения, разлагающиеся при прокаливании не до конца, - в таких случаях применяют другие способы минерализации сжигание в токе кислорода, окисление в бомбе и т.д. [c.51]

    К кислотам Льюиса относятся галогениды бора, алюминия, фосфора, мышьяка, сурьмы и многих других элементов, ё- и /-ионы комплексообразователи и т. п., к основаниям ЛьюИса — кислород и азотсодержащие соединения, ионы галогенов и др. [c.286]

    Все галогениды мышьяка, сурьмы и висмута, хотя и в разной степени, склонны к гидролитическому разложению. Гидролиз тригалогенидов протекает, например, по такой схеме  [c.294]

    При анализе мышьяка и трехокиси его мышьяк отделяют отгонкой в виде галогенида на стадии разложения материалов и последующей экстракцией четыреххлористым углеродом из 9 п. соляной кислоты, содержащей иодид калия. [c.141]

    При анализе хлорида мышьяка первоначально проводят его экстракцию четыреххлористым углеродом, а остаточные количества отделяют отгонкой в виде галогенида. [c.141]

    Галлий и сурьму в основном удаляют из раствора однократной экстракцией диэтиловым эфиром мышьяк удаляют в виде галогенида отгонкой. Полное отделение остаточных количеств мышьяка и сурьмы, мешающих определению, достигается упариванием раствора с бромистоводородной кислотой досуха. [c.143]


    Для всех галогенидов мышьяка и его аналогов характерны три основных типа химических реакций термическая диссоциация, гидролиз и комплексообразование. Низшим галогенидам, кроме того, свойственны реакции диспропорционирования. Наиболее характерна термическая диссоциация для пентагалогенидов, протекающая по схеме [c.293]

    Мышьяк и сурьма по большинству химических свойств напоминают фосфор. Например, оба эти элемента образуют га.погениды состава МХ3 и МХ5, структура и химические свойства которых близки соответствующим галогенидам фосфора. Соединения этих элементов с кислородом также очень сходны с соответствующими соединениями фосфора, однако они не так легко достигают своей высшей степени окисления. Так, при горении мышьяка в кислороде образуется продукт формулы А540й, а не А540,о- Высший оксид мышьяка можно получить окислением А540б каким-либо сильным окислителем, например азотной кислотой  [c.327]

    Взвешенные частички большинства коллоидов несут положительные (коллоидные растворы гидроокисен алюминия, железа, хрома и др.) или отрицательные (коллоидные растворы кремневой и оловянной кислот, сернистые соединения мышьяка и кадмия, галогениды серебра и др.) заряды. Зарядность коллоидных частиц обусловливается адсорбцией на их поверхности анионов (отрицательный заряд) или катионов (положительный заряд). Так, сульфиды адсорбируют 5 - и 5Н -ионы, галогениды серебра — Ag - или СГ-ионы, гидроокиси — ОН -ионы. [c.229]

    При добавлении галогеноводородной кислоты галогениды мышьяка гидролизуются iie до конца, а галогениды сурьмы и висмута гидролизуются до образования окси-галогенидов, например [c.376]

    Г. неметаллов — ковалентные соед. с разл. степенью полярности связи многие газообразны разлаг. водой с образованием к-ты и Нз. Получ. восст. галогенидов элементов боро- или алюмогидридами металлов из элементов. См., напр.. Алюминия гидрид, Бороводороды, Лития гидрид, Мышьяка гидрид, Титана гидрид. Циркония (11) гидрид. [c.131]

    ГАЛОГЕНИДЫ И ОКСОГАЛОГЕНИДЫ МЫШЬЯКА, СУРЬМЫ И ВИСМУТА [c.46]

    МЫШЬЯКА ГАЛОГЕНИДЫ. Пентафторид AsF,-бесцв. газ (см. табл.) ур-ние температурной зависимости давления пара над жидким АзР, Igp (мм рт.ст.) = 7,845 — [c.157]

    МЫШЬЯКА ХЛОРЙДЫ, см. Мышьяка галогениды. МЫШЬЯКОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, содержат СВЯЗЬ Аз—С. Иногда к М.с. относят все орг. соед., содержа- [c.161]

    Кислотами Льюиса являются галогениды бора, алюминия, кремния, олова, фосфора, мышьяка, сурьмы и многнх других элементов, ионьг-комплексообразователи Ад+, Со +, Сг +, н др. [c.284]

    При анализе таких твердых веществ, как кремний, германий, мышьяк, селен, олово, сурьма, хром, элементы основы отгоняются в виде летучих галогенидов, например кремний (и кремнезем) в виде 31р4. Это позволяет определять в остатке после отгонки до 10- % железа, индия, меди, никеля, таллия, цинка, фосфора, алюминия и некоторых других элементов. [c.19]

    Т. н. является побочным продуктом в производстве гидросульфита, при очистке промышленных газов от сернистых соединений, в производстве сернистых красителей. Т. и. применяют для приготовления фиксажных растворов, с помощью которых растворяются галогениды серебра, не разложившиеся под действием света на фотокиноотпечатках в текстильной промышленности для связывания остатков хлора после отбеливания тканей в кожевенной промышленности ветеринарии, медицине как противоядие при отравлении цианистоводородной кислотой, иодом, солями тяжелых металлов, мышьяком, ртутью и т. п. в аналитической химии. [c.250]

    Для элементов подгруппы мышьяка характерны сульфиды ЭоЗаиЭзЗз для Аз и Sb. Все сульфиды — твердые порошки, нерастворимы в воде и разбавленных кислотах. Получают сульфиды из галогенидов  [c.318]

    Кислотами Льюиса считаются галогениды бора, алюминия, кремния, олова, фосфора, мышьяка, сурьмы и многих других элементов, ионы-комплексооб 5азователи Ag" , Со , [c.241]

    Продукты взаимодействия элементов подгруппы хрома с фосфором, мышьяком и сурьмой резко отличаются от галогенидов и халь-когенидов тем, что их формульный состав не отвечает правилам формальной валентности, т. е. фосфиды, арсениды и стибиды хрома и его аналогов принадлежат к классу аномально построенных дальтонидов, содержащих анион-анионные и катион-катионные связи. Наиболее характерны для фосфидов соединения состава ЭзР, ЭР и ЭРг- Образование моно- и дифосфидов вообще весьма характерно для переходных металлов. Для таких фосфидов при всем разнообразии их состава можно отметить общие закономерности, заключающиеся в том, что по мере увеличения относительного содержания фосфора понижаются температуры плавления, увеличивается склонность к термической диссоциации с отщеплением летучего компонента (фосфора), уменьшается ширина области гомогенности и при этом свойства меняются от металлических у фосфидов типа ЭзР и ЭР до полупроводниковых у высших фосфидов ЭР . [c.346]

    Вещества, являющиеся донорами электронных пар, называют основаниями Льюиса, а акцепторы электронных hap - кислотами Льюиса. К основаниям Льюиса относятся галогенид-ионы, вещества, содержащие аминный азот (аммиак, алифатические и ароматические амины, пиридин и т. п.), кислородсодержащие соединения общей формулы Rj O (где R - органический радикал или атом галогена). Кислотами Льюиса являются галогениды бора, алюминия, кремния, олова, фосфора, мышьяка, сурьмы и многих других элементов, ионы-комплексообразователи Ag, Со , Сг , Pt и др. [c.302]


    Для всех галогенидов мышьяка и его аналогов характерны три осноеных типа химических реакций термическая диссоциация, гидролиз и комплексообразова- [c.423]

    Все галогениды мышьяка похожи на галогениды фосфора. Типичный кислотный характер имеют галогениды 5Ь(У) и В1(У) (известен только В1Рб). [c.450]

    Соединения с другими неметаллами. Все три элемента подгруппы мышьяка непосредственно взаимодействуют с галогенами. При этом мышьяк и сурьма образуют два ряда галогенидов ЭГз и ЭГб, а для висмута характерны низшие галогениды В1Гз. Известен лишь BiFg. Помимо галогенидов, отвечающих характерным степеням окисления, известны тетрахлориды сурьмы и висмута ЭСЦ. Для висмута, кроме того, известны и дигалогениды (кроме фторида). [c.290]

    Все известные галогениды элементов подгруппы мышьяка склонны к реакциям комплексообразования. При этом они способны образовывать два типа комплексных соединений ацидокомплексы и катионршге комплексы. Пентагалогениды являются лучшими комплексообразователями, чем тригалогениды, что можно легко понять как с позиции электростатических представлений, так и с позиций МВС. Для тригалогенидов более характерны катионные комплексы, которые можно рассматривать как продукты присоединения к ЭГ., нейтральных молекул, имеющих неподеленные электронные пары, например [Лз(ЫНз)4]С)з, [В](Ы0)]С1з и т. д. Кроме того, они образуют и ацидокомплексы при взаимодействии с галогенидами активных металлов, которые с точки зрения электронной теории кислот и оснований обладают основными свойствами, например  [c.294]

    Самым удобным и чаще всего применяемым методом получения мышьякоргани-ческих соединений является взаимодействие галогенидов мышьяка о реактивами Гриньяра (или же с литинорганическими соединениями) [191]. [c.666]

    Степень окисления +3 у мышьяка, и его аналогов проявляется в галогенидах ЭНа1з, оксидах Э2О3, сульфидах Э283. Бинарные соединения и гидроксиды Э (П1) амфотерны. Отвечающие кислотным признакам соединений Э (П1) анионные комплексы Имеют состав I [c.413]

    Здесь прежде всего должны быть упомянуты исследования по электрохимии неводных растворов галогенидов сурьмы и мышьяка, выполненные В. А. Плотниковым совместно с М. И. Усановичем и О. К. Кудрой. Эти работы позволили установить однозначное соответствие между концентрационной зависимостью электропроводности и составом образующихся в системе комплексных и молекулярных соединений. [c.175]


Смотреть страницы где упоминается термин Мышьяка галогениды: [c.157]    [c.351]    [c.340]    [c.351]    [c.368]    [c.80]    [c.370]    [c.22]    [c.258]    [c.293]    [c.268]    [c.423]    [c.320]    [c.357]    [c.360]   
Неорганическая химия (1989) -- [ c.292 ]

Аналитическая химия мышьяка (1976) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие галогенидов мышьяка с силанолами

Мышьяк галогениды, реакции присоединения

Этиленсульфид галогенидами мышьяка



© 2025 chem21.info Реклама на сайте