Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк анализ

    Очень важно, что величины произведений растворимости разных сульфидов различаются чрезвычайно сильно. Это позволяет,, надлежащим образом регулируя величину pH раствора, разделять катионы разных металлов путем осаждения их в виде сульфидов. Так, из качественного анализа известно, что сульфиды IV и V аналитических групп осаждаются сероводородом в кислой среде, так как величины их произведений растворимости очень малы (порядка 10 29 J, менее). Наоборот, осаждение катионов П1 аналитической группы (произведение растворимости порядка 10 —10" ) сероводородом или сульфидом аммония проводят в щелочной среде (при pH около 9). Аналогичные методы нередко применяются и в количественном анализе, например для отделения катионов меди, висмута, олова и других металлов от катионов железа и т. д. Регулируя кислотность раствора при осаждении сульфидов, можно количественно разделять катионы, принадлежащие к одной и той же аналитической группе. Так, в присутствии уксусной кислоты цинк можно количественно отделить от железа, в присутствии 10 н. раствора НС1 — отделить мышьяк от олова и сурьмы и т. д. [c.121]


    Броматометрический метод особенно удобен для определения мышьяка(1П) и сурьмы(П1). Броматометрическое определение сурьмы применяют при анализах баббитов. Этим методом пользуются также при анализе некоторых органических соединений, так как многие органические соединения способны к реакциям бромирования, протекающим при действии свободного брома, например  [c.413]

    Основные методы анализа основаны на применении солей железа, олова или мышьяка, а также иодидов [7, 72, 105, 112, ИЗ]. [c.299]

    С пептизацией (как с очень нежелательным явлением) приходится сталкиваться при химических анализах, когда, например, свежеосажденный трехсернистый мышьяк при промывании его водой переходит в коллоидное состояние и проходит сквозь фильтр. [c.524]

    ЯМР-анализ позволяет подтвердить присутствие в МСС мышьяка в пятивалентном состоянии. [c.292]

    При контроле производства неорганических веществ руководствуются технологическим регламентом производства и действующими стандартами на сырье и готовую продукцию. Так, например, в производстве серной кислоты выполняются анализ сырья, огарка, газов и готовой продукции. Определению в сырье подлежат следующие компоненты сера, оксиды железа, алюминия, мышьяка, кремния, меди, кальция, магния, селена, теллура и углерода проверяются также влажность и нерастворимый в кислотах остаток. В огарках определяют содержание серы, оксидов железа, алюминия, меди, цинка, кальция, магния и кремния. Б газах контролируют содержание серного и сернистого ангидридов, кислорода и оксидов мышьяка и селена. [c.204]

    Количественный химический анализ имеет большое значение в технике. Развитие химической технологии, особенно металлургии, вызвало необходимость разработки новых методов анализа, а также расширения и углубления теории количественного анализа. Химический анализ незаменим при исследованиях полезных ископаемых, которые являются основным сырьем для многих важнейших отраслей промышленности. При исследовании руд часто необходимо определить содержание не только основных компонентов, но также и малых количеств примесей (мышьяка, фосфора и др.), так как это в значительной степени определяет ценность руды и пути ее переработки. [c.10]

    При определении сурьмы, мышьяка, германия и некоторых других элементов избегают обработки исходной пробы соляной кислотой и вообще стремятся не нагревать солянокислые растворы. Если при анализе этих элементов все же без нагревания обойтись нельзя, его производят с обратным холодильником, чтобы не допустить потерь за счет улетучивания хлоридов. [c.19]


    Таким образом, сульфиды мышьяка отличаются от сульфидов сурьмы и олова нерастворимостью в концентрированной соляной кислоте и растворимостью в карбонате аммония. Первое различие используется для отделения мышьяка от сурьмы и олова в ходе систематического анализа. [c.314]

    Для полного и быстрого осаждения сульфидов мышьяка из растворов, содержащих ионы AsO , в систематическом ходе анализа представляется более удобным не увеличивать содержания НС1 в растворе, а воспользоваться каталитическим действием иодид-ионов. Последние легко окисляются арсенатами в кислой среде (см. п. 2) с образованием арсенит-ионов и свободного иода, который тотчас же вновь восстанавливается в иодид-ионы сероводородом. [c.317]

    Мышьяк имеет только одну аналитическую линию 4352 А, на которую к тому же может накладываться линия хрома. Анализ по одной линии рекомендовать не следует. [c.193]

    Закончить уравнение реакции, которая лежит в основе метода открытия мышьяка (этот метод широко применяется при различных судебно-медицинских и санитарных анализах)  [c.274]

    Сублимация основы. Этот метод применим к анализу веществ, которые имеют высокую летучесть. На воздухе без осложнений могут быть отогнаны при температуре сублимации йод, цинк, мышьяк, сурьма. В ряде случаев применяют метод отгонки в потоке инертного газа. В табл. 2.4. показаны условия сублимации основы для ряда элементов и соединений. [c.199]

    Экстракционные методы. Наибольшее применение экстракционные методы концентрирования примесей имеют при анализе -ВОДЫ, кислот, щелочей, щелочных металлов и их солей. Характерно для этого способа концентрирование анионных форм таких элементов, как мышьяк, фосфор, вольфрам, селен, теллур, и неметаллов. Основные элементы, как правило, экстрагируют из сильно кислых сред активными кислородсодержащими растворителями в виде галогенсодержащих комплексных соединений. Такой метод отделения примесей в ряде случаев сопровождается побочными нежелательными эффектами (например, соэкстракцией). [c.202]

    Анализ катионов подгруппы мЫшьяка [c.191]

    При анализе мышьяка и трехокиси его мышьяк отделяют отгонкой в виде галогенида на стадии разложения материалов и последующей экстракцией четыреххлористым углеродом из 9 п. соляной кислоты, содержащей иодид калия. [c.141]

    При анализе хлорида мышьяка первоначально проводят его экстракцию четыреххлористым углеродом, а остаточные количества отделяют отгонкой в виде галогенида. [c.141]

    Для определения фосфора в мышьяке и трехокиси мышьяка две навески по 2,5 г тонкорастертого мышьяка или окиси мышьяка помеш,ают каждую в коническую колбу емкостью 50 мл, приливают 9 мл 6 н. соляной кислоты. При анализе мышьяка добавляют по каплям через воронку 6 мл брома и растворяют на холоду. [c.142]

    В предлагаемом ниже методе для восстановления пероксидов используют триоксид мышьяка. Анализ с применением триоксида мышьяка можно проводить во многих обычных органических растворителях, в частности этот метод можно применять для определения пероксидов в мономерах и полимерах. Райхерт и сотр. [21] использовали триоксид мышьяка для определения различных неорганических пероксидов. [c.285]

    А мышьяк Кстати, знаменитая аква Тоффана — водный раствор соединений мышьяка. Мышьяком был отравлен французский математик Кондорсе, английский поэт Честертон. Не исключено, что и Наполеон безвременно покинул свою последнюю обитель — остров Св. Елены — не без помощи тайных представителей Священного союза, добавлявших в пищу свергнутого императора мышьяк (анализ обнаружил в останках Наполеона повышенное содержание мышьяка). [c.16]

    В заключение следует сказать несколько слов о технике безопасности в лаборатории количественного анализа. Все операции с ядовитыми газами и жидкостями (НгЗ, Вгг, СЬ, ртуть и ее соединения, соединения мышьяка и т. п.) необходимо проводить под тягой. С большой осторожностью нужно работать с фтористоводородной и хлорной кислотами. Первая может причинить серьезные ожоги, вторая взрывается при нагревании в присутствии органических веществ. Выпаривание всех сильных кислот и растворов, содержащих пахучие вещества, необходимо проводить в вытяжном шкафу, при отмеривании едких и ядовитых жидкостей нужно пользоваться мерными цилиндрами и специальными пипет ками. [c.41]

    Полный элементный анализ нефтяной золы позволяет установить в ней присутствие серы, кислорода, азота, ванадия, фосфора, калия, никеля, йода, кремния, кальция, железа, магния, натрия, алюминия, марганца, свинца, серебра, меди, титана, урана, олова и мышьяка (элементы расположены в порядке их встречаемости ряд в этом отношении не может считаться твердо установленным р ]. (Комментарий Н. Б. Вассоевича). [c.105]

    Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25°С О = 1,3-10" см с) [17], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцинкованных слоев Б-латуни (сплав 2п—Си с 86 ат. % 2п) и -у-латуни (сплав 2п—Си с 65 ат. % 2п) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным. [c.334]


    Началось с мышьяка. Известный немецкий химик Роберт Буьг5сн в 1841 году получил диметиларсин (СН ),AsH (какодил). Это далось ему нелегко - он потерял при этом глаз и сильно отравился, но продолжал исследования. Это, может быть, самое важное и исследовахпш Бунзена, хотя он известен как изобретатель удачной конструкции газовой горелки и, совместно с Кирхгофом, разработчик спектрального анализа. [c.191]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    При анализе таких твердых веществ, как кремний, германий, мышьяк, селен, олово, сурьма, хром, элементы основы отгоняются в виде летучих галогенидов, например кремний (и кремнезем) в виде 31р4. Это позволяет определять в остатке после отгонки до 10- % железа, индия, меди, никеля, таллия, цинка, фосфора, алюминия и некоторых других элементов. [c.19]

    При анализе мышьяковистокислой меди определяют йодометрическим методом как медь, так и мышьяк. В кислом растворе медь реагирует с йодистым калием, выделяя эквивалентное количество йода, который титруют серноватистокисльш натрием. В другой пробе раствора связывают медь в комплекс посредством виннокислого натрия и титруют анион АзО рабочим раствором йода. [c.402]

    Ход анализа. К раствору соли трехвалентного мышьяка приливают кислоту или щелочь до слабокислой реакции по фенолфталеину, затем прибавляют 1 г кислого углекислого натрия и, после растворения NaH O,, приливают 2—3 мл крахмала. Полученный раствор титруют 0,1 н. раствором йода до появления неисчезающего синего окрашивания. В конце титрования реакция между мышьяковистой кислотой и йодом замедляется, вследствие чего синее окрашивание появляется еще до точки эквивалентности. Но через короткое время окраска исчезает. Титрование нужно вести до появления не исчезающего при взбалтывании окрашивания, что свидетельствует о полном окислении мышьяковистой кислоты. [c.414]

    С. М. Драчев, А. С. Разумов, С. Б. Бруевич, Б. А. Скопинцев, М. Т. Голубевг[. Ме тоды химического и бактериологического анализа воды. [Медгиз, 1953, (280 стр В книге описаны наиболее достоверные методы качественного исследования и коли чественного определения физических свойств и химического состава органических и неорганических веществ, растворенных в воде. Значительное место уделено по.1евым методам анализа воды. Помимо анализа воды па обычные компоненты, в книге приведено описание методов определения менее распространенных элементов мышьяка, свинца, меди, цинка, фтора, хрома, селена, [c.491]

    Важным этапом анализа является выбор растворителя цля растворения анализируемого вещества. Некоторые вещества растворимы в воде, но чаще для растворения приходится использовать другие вещества, их нужно выбирать так, чтобы растворение было полным. При выборе растворителя нужно считаться и с химическим составом анализируемого материала. Например, не рекомендуется применять соляную кислоту, если анализируемый объект содержит мышьяк, ртуть (И), так как при растворении эти элементы могут быть частично псугвряны из-за летучести их хлоридов. Наиболее часто для растворения используют кислоты соляную, серную, азотную, хлорную или их смеси реже применяют растворы гидроксидов щелочных металлов. [c.24]

    Для проведения анализа используют солянокислый раствор анализируемого вещества, из которого удалены и Н т(1). Раствор не должен содержать и С204 . Для отделения раствор дважды выпаривают досуха с соляной кислотой. При зтом мешающие кислоты разлагаются, в анализируемом растворе должны находиться только С1 , 8042-, Р04 и ВОз . Мышьяк, сурьму и ртуть нужно обнаружить в исходном растворе, так как их хлориды летучи. Реакцией с метиленовым голубым обнаруживают 5п(П) и Ре(П). Эти ионы нужно окислить бромной водой и избыток брома удалить кипячением. [c.82]

    Большое значение имеет, например, метод выделения и концентрирования, основанный на обменном осаждении. Этот метод применяют при анализе воды (питьевой, талой, речной, морской) на содержание следовых количеств Нд, Ад, Си, В1, РЬ, Сс1, 5п, Аз, 5е, Те, 2п, Со и N1. Пробу воды (от 0,1 до 6 дм pH 3—6) про-сасывают через гомогенный слой свежеосажденных сульфидов (2п5, Мп5, Си5, РЬ5 и др.), находящийся на мембранном фильтре (митрат целлюлозы или политетрафторэтилен с диаметром пор <1 мкм). Тмщина слоя сульфида 300—400 нм. При этом из раствора практически полностью выделяются элементы (за исключением мышьяка), образующие малорастворимые сульфиды, величина произведения растворимости которых меньше, чем для сульфида обменного слоя (табл. Д.32). [c.422]

    Окрашенный осадок нагревают несколько минут на кипящей водяной бане для полного разложения тиосолей и коагуляции обра-зовави1Ихся сульфидов. Смесь центрифу нруют, центрифугат IV отбрасывают и пере.ходят к анализу осадка IV, содержащего сульфиды мышьяка, сурьмы, олова (IV) и ртути (11). [c.323]

    Метод основан иа титровании индия (111) при pH 1,0 раствором динатриевой соли этилендиаминтетрауксусной кислоты (комплексон III). Точку эквивалентности устанавливают по исчезновению диффузионного тока восстановления 1п Ч-иона на ртутном капельном электроде при потенциале от —0,7 до —0,8 в относительно насыщенного каломельного электрода. Определению не мешают многие элементы, с которыми обычно приходится встречаться при анализе индийсодержащих продуктов, а именно 2п, Мп, Сс1, Со, А1. Титрованию не мешают также значительные количества Ре++ ( 10 мг). Железо (111) восстанавливают до Ре++. Влияние олова (-<5 мг) и сурьмы (-<2. мг) устраняют введе-ннем винной кислоты. Определение возможно в присутствии небольших количеств (-<0,5 мг) ионов медн, если их замаскировать тномочевиной, и ионов свинца, а также мышьяка (-<2 мг). Большие количества этих элементов затрудняют установление точки эквивалентности вследствие того, что медь, свинец и мышьяк дают диффузионный ток. Однако эти элементы легко отделяются от индия в ходе анализа мышьяк и свинец удаляются при разложении пробы смесью хлористоводородной и серной кислот и упаривании раствора до появления паров Н2504 медь — при осаждении гидроокиси нндия избытком аммиака. Определению мешает висмут. [c.369]

    При анализе арсеиида индия остаток растворяют при нагревании в 20 мл хлористоводородной кислоты (1 7), прибавляют 1 мл раствора хлорида олова (И), 10 мл раствора гипофосфита натрия и немного мацерированной бумаги, в ХОЛОСТО опыт вводят дополнительно 1 мл раствора арсената натрия (50 мг мышьяка). [c.384]

    В основном метод ИСПС разработан для анализа растворов. Их вводят с помощью специальных распылителей, известны методы введения твердых проб, существуют также варианты введения газообразных гидридов для определения мышьяка, теллура, селена, олова и др. [c.72]

    Легко протекающий при нагревании распад мышьяковистого водорода на элементы лежит в основе метода открытия мышьяка, которым обычно пользуются при судебно-медицинских и санитарнь,1х анализах. Для проведения реакции испытуемый материал обрабатывают цинком и соляной кислотой, пропуская выделяющиеся газы сквозь нагретую стеклянную трубку. При наличии Аз около места нагрева образуется блестящий черный налет ( зеркало ) элементарного мышьяка. Применяемые для определения цинк и соляная кислота должны быть при помощи холостого (т. е. выполняемого без испытуемого материала) опыта тщательно проверены на отсутствие примесей мышьяка. [c.470]

    Для определения фосфора в образце стали берут две навески по 0,15 мг углеродистой или низколегированной стали, помещают каждую в коническую колбу емкостью 100—125 мл, добавляют 5 мл разбавленного раствора азотной кислоты и нагревают до полного растворения пробы. (При анализе некоторых хромовых сталей, кроме азотной кислоты, добавляют еще 3 мл соляной кислоты 1 1.) Пипеткой добавляют 5 мл раствора хлорной кислоты. Осторожно выпаривают до появления паров и после этого продолжают нагревание 3—5 мин до удаления азотной кислоты. Охлаждают, и, если сталь содержит более 0,05% мышьяка, добавляют 5 мл разбавленного раствора бромистоводородной кислоты и осторожно выпаривают до удаления НВг, переводят в мерные колбы емкостью 25 мл и доводят объем раствора водой до метки. Берут две порции по 10 мл из кааодой колбы, помещают растворы в конические колбы емкостью 50 мл, добавляют в каждую ио 15 мл раство- [c.140]

    Примечание. Этот метод приготовления эталонных растворов используют при анализе всех объектов (мышьяка и его соединений, сурьмы, галлия и его соединений), в которых для получения синей формы фосфорномолибдеповой гетерополикислоты применяют аскорбиновую кислоту с тартратом калием антимопилом. [c.142]

    При выполнении анализов имеют дело с большим количеством различных реактивов, среди них имеются ядовитые, огнеопасные и взрывоопасные. К ядовитым относятся аммиак, бром (пары) сероводород, соли ртути, мышьяка, хлорид бария, цианиды, ща велевая кислота и ее соли. Огнеопасные вещества ацетон бензол, спирты, эфиры, хлороформ и другие органические раство рители. Взрывоопасные вещества аммиачный раствор нитра та серебра, концентрированная хлорная кислота при контакте с органическими веществами. [c.243]

    Еще ближе к решению вопроса о числовом отношении соединяющихся атомов подошла теория химических типов Ш. Жерара и его правило четных паев . В 1841 —1842 гг. Ш. Жерар установил правило, согласно которому число атомов углерода в химической формуле (если исходить из удвоенных формул) органического соединения кратно 4 или 2, число атомов водорода кратно 4, а число атомов кислорода кратно 2. В 1846 г. О. Лоран сформулировал такое правило Число атомов углерода и кислорода в органическом соединении может быть или четным, или нечетным, в то время как число атомов водорода должно быть всегда четным, а если соединение содержит и азот, тогда сумма атомов водорода и азота (соответственно фосфора, мышьяка) должна делиться на два . Это правило можно выразить другими словами В химической молекуле сумма нечетновалентпых атомов (Н, С1, В, N и др.) равняется четному числу . Например, во всех углеводородах сумма атомов водорода, а в азотных и водородных соединениях (КНз) сумма атомов водорода и азота равна четному числу. Этот вывод, рассматриваемый теперь как прямое следствие теории строения, был одной из первых закономерностей, которые позволили О. Лорану и Ш. Жерару делать заключение о числе атомов в молекуле и указывать на неправильное определение состава химических соединений, т. е. исправлять результаты химического анализа и химические [c.171]


Смотреть страницы где упоминается термин Мышьяк анализ: [c.306]    [c.17]    [c.491]    [c.595]    [c.429]    [c.326]    [c.39]    [c.175]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.417 ]




ПОИСК







© 2025 chem21.info Реклама на сайте