Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура атомная

    Как объясняет теория Бора происхождение и линейчатую структуру атомных спектров По какой формуле можно вычислить частоту колебаний и волновое число для каждой линии в спектре атома водорода Почему в спектроскопии предпочитают пользоваться последним  [c.77]

    Все предложенные до настоящего времени теории зарождения и роста НК и пленок игнорируют реальное состояние поверхности раздела, участие во многих случаях химических реакций в процессе кристаллизации из газовой фазы, следствием которых является наличие слоя хемосорбированных молекул на поверхности раздела. При наличии хемосорбции непосредственный обмен между подложкой и средой практически отсутствует и хемосорбционный слой в известном смысле можно считать промежуточной двумерной фазой . Рост кристалла в этом случае, по-видимому, происходит в результате актов химического распада молекул хемосорбционного слоя, механизм которых совершенно не изучен. Особая трудность возникает при обсуждении возможных механизмов роста эпитаксиальных пленок сложных соединений при жидкофазном осаждении в связи с тем, что молекулярная форма нахождения большинства этих соединений в растворах и расплавах в настоящее время неизвестна. Поэтому единой достаточно удовлетворительной теории зарождения и роста НК и пленок при газофазном осаждении пока не существует. Необходимо дальнейшее накопление надежных экспериментальных данных о реальной структуре (атомной и электронной) поверхностей раздела, о явлении хемосорбции, о так называемой закомплексованности и других определяющих явлениях. Важным также в теории гетерогенного зародышеобразования пленок является установление соотношения между процессами статистического зародышеобразования на чистых подложках и на активных центрах. Имеются сведения (Л. С. Палатник и др. 1972 г.) об образовании и длительном существовании в тонких пленках термодинамически неравновесных фаз. Поэтому пределы применимости к тонкопленочным системам (приборы микроэлектроники, оптические покрытия и др.) диаграмм состояний, разработанных для систем массивных материалов, требуют подробного анализа и обсуждения. [c.485]


    Строение атома по Бору. Планетарная модель Резерфорда, явившаяся научным обоснованием опытов по рассеянию а-частиц, противоречила факту устойчивого существования самих атомов. Дело в том, что движение электрона по орбите есть движение ускоренное. Но ускоренное движение электрона представляет собой переменный ток, который индуцирует в пространстве переменное электромагнитное поле. На создание последнего расходуется энергия электростатического взаимодействия электрона с ядром, в результате чего электрон должен двигаться по спирали (а не по замкнутой орбите) и упасть на ядро, что равносильно ликвидации атома. Расчеты показывают, что продолжительность жизни атома в таком случае должна быть порядка 10 с. В действительности же атомы — исключительно устойчивые образования. Кроме того, согласно планетарной модели энергия атома должна уменьшаться непрерывно (при движении по спирали) и атомный спектр должен быть также непрерывным. А опыт показывает, что все атомные спектры без исключения имеют дискретный (линейчатый) характер. Спектр же служит одной из важнейших характеристик вещества и отражает его внутреннее строение. Таким образом, планетарная модель противоречит также линейчатой структуре атомных спектров. Все эти факты свидетельствуют о том, что законы классической физики неприменимы для описания явлений атомного мира. [c.33]

Рис. 6.5. Расположение молекул иода в молекулярном кристалле Рис. 6.6. Структура атомного кристалла алмаза Рис. 6.5. <a href="/info/761443">Расположение молекул</a> иода в <a href="/info/15560">молекулярном кристалле</a> Рис. 6.6. Структура атомного кристалла алмаза
    Наряду с энергией связи и стабильностью ядер больщое значение в химических процессах имеют также магнитный и электрический моменты ядра. Спин ядра складывается из спинов нуклонов С/2Й) таким образом, что составляет четное или нечетное число, кратное исходному спину /гй. Поэтому спин ядра может для разных элементов меняться от О до 4,5. Он проявляется в сверхтонкой структуре атомных спектров и является основой метода ядерного магнитного резонанса. Так называемый квадрупольный момент ядра Q отражает асимметрию распределения заряда в ядре. Он особенно важен при взаимодействии между неполярными молекулами (например, молекулами СОг в газовой фазе). Q дает также информацию об отклонении ядра от сферической формы. [c.35]


    В структуре атомного кристалла невозможно выделить отдельные молекулы, весь кристалл можно рассматривать как одну гигантскую молекулу. Поскольку ковалентные связи весьма прочны, вещества, имеющие атомные решетки, всегда являются твердыми, тугоплавкими, малолетучими. [c.144]

    Элементы н структура Атомный Элементы и структура Атомный [c.438]

    Написать структуру атомных орбитал.ей цинка и кадмия. . [c.106]

    Плазмохимические реакции протекают, как правило, в неравновесных условиях. Кинетика таких процессов отличается от обычной химической кинетики. Неравновесная химическая кинетика учитывает квантовую энергетическую структуру атомно-молеку-лярных частиц, переходы между различными энергетическими состояниями и вероятность протекания различных химических реакций. [c.199]

    Если ядро имеет ненулевой спин, то существует взаимодействие между ядерным спиновым магнитным моментом, спиновым и орбитальным магнитным моментом электрона, которое ведет к так называемой сверхтонкой структуре атомных спектров. Полный уг-—> [c.93]

    Если ядро имеет ненулевой спин, то существует взаимодействие между ядерным спиновым магнитным моментом, спиновым и орбитальным магнитным моментом электрона, которое ведет к так называемой сверхтонкой структуре атомных спектров. Полный угловой момент F атома есть сумма полного момента всех электронов J и спинового момента ядра Г. [c.84]

    Хотя функция i = f n) периодична, однозначной связи между строением электронных оболочек атомов и молярными объемами нет. Одной из важнейших характеристик состояния электронов в атомах являются ионизационные потенциалы атомов. Они определяют энергию связи электронов в атомах и тесно коррелируют со структурой атомной оболочки. Первые ионизационные потенциалы атомов, т, е, характеристики энергии, необходимой для отрыва одного электрона от электрически нейтрального атома, представлены как функции порядкового номера п иа рис. 76. Из рисунка видно, что периодическая зависимость первых ионизационных потенциалов /j от п выражена ярко. Максимумы 1 соответствуют атомам элементов подгруппы гелия, а минимумы — атомам элементов подгруппы лития. [c.263]

    Спиновое квантовое число. Изучение тонкой структуры атомных спектров показало, что кроме различия в размере облаков, их формы и характера расположения относительно друг друга электроны различаются спином. Спин можно представить как веретенообразное вращение электрона вокруг своей оси. Для характеристики спина электрона вводится четвертое квантовое число ms, называемое спиновым. Оно имеет значения +1/2 и -1/2 в зависимости от одной из двух возможных ориентаций спина в магнитном поле. [c.26]

    Особенности электронных волновых функций определяются не только межэлектронным взаимодействием, т.е. электронной корреляцией, приводящей к большим или меньшим отклонениям от одноэлектронного приближения, но и рядом других взаимодействий, пока не учитывавшихся. Другими словами, в гамильтониане молекулярной системы пока не принимался во внимание ряд слагаемых, приводящих подчас к хотя и не очень сильным, но весьма характерным эффектам. Такие взаимодействия обычно носят название тонких и сверхтонких, а вызываемые ими расщепления вырожденных энергетических уровней обуславливают тонкую и сверхтонкую структуру атомных и молекулярных спектров. [c.391]

    При образовании кристаллической структуры атомные группировки. существующие в растворе или в расплаве, стремятся сохранить свою конфигурацию, межатомные расстояния и валентные углы, поскольку любая их деформация требует затраты энергии. Наиболее жесткими , т.е. не поддающимися заметным деформациям, будут группы атомов, связанных прочными ковалентными связями, именно к таким относятся ртутные гантели (Hg2) и треугольники речь о которых щла в предыдущей главе. Можно предполагать. что замена отдельных атомов на группу имеет смысл не только для кристаллохимического описания, но и при анализе структурообразующих факторов, т.е. закономерностей согласования положений и ориентаций таких жестких атомных фрагментов с остальными элементами кристаллической структуры. [c.105]

    Если число протонов и нейтронов четное, то магнитный момент во всех без исключения случаях равен нулю если эти числа нечетны, он равен целой величине, а если только одно число нуклонов нечетно — полуцелой величине. Все это обусловлено тем, что протоны и нейтроны, находясь в атомном ядре в различных сочетаниях, определяют такую структуру ядра, при которой ядерные спины взаимно компенсируются, что имеет важное значение для понимания структуры атомного ядра. [c.51]

    Принимая это во внимание, можно объяснить различную форму атомных групп и углы между связями минимумом отталкивания окружающих атомов (включая неподеленные пары). Такая интерпретация носит лишь качественный характер, но она весьма полезна для оценки структуры атомной группы. [c.155]

Рис. 1-14. Структура атомно-гладкой грани со ступенью (грань куба кристалла Рис. 1-14. Структура атомно-гладкой грани со ступенью (грань куба кристалла
    Качественный спектральный анализ бензпирена производится в настоящее время, как правило, с использованием эффекта Шпольского, то есть по спектрам люминесценции веществ в растворах нормальных парафиновых углеводородов, замороженных при температуре жидкого азота. При таких условиях во многих случаях широкополосные молекулярные спектры люминесценции превращаются в спектры с тонкой структурой, часто напоминающей линейчатую структуру атомных спектров. Эти спектры обычно называют квазилинейчатыми. [c.292]


    К твердым атомных веществам относится огромное количество органических и неорганических полимеров, такие простые твердые вещества, как алмаз, кремний и другие неметаллы и металлы, а также твердые ионные соединения. Объединяющим показателем для них является то, гго эти вещества построены посредством межатомных связей. В отличие от молекулярных твердых соединений, которые всегда имеют кристаллическую структуру, атомные твердые вещества могут обладать как кристаллической, так и аморфной структурой. Металлы и ионные соединения характеризуются кристагшической структурой и в обычных условиях не образуют аморфных тел. Для полимерных материалов характерно пребывание в аморфном состоянии. Главным структурообразующим фактором для полимеров служат ковалентные связи, образующие одно-, двух- или трехмерные остовы -макромолекулярные части структуры полимерного материала. При помощи дополнительного структурообразующего фактора - ван-дер-ваальсовых и [c.108]

    ГЛАВА VIII. ЭЛЕКТРОННАЯ СТРУКТУРА АТОМНЫХ СОЕДИНЕНИЙ [c.99]

    В узлах атомных (ковалентных) кристаллических решеток находятся атомы, соедицениые друг с другом ковалентными связями. Веществ, имеющих атомную решетку, сравнительно немного. К ним относятся алмаз, кремний, некоторые соединения элементов с углеродом и кремнием - карбиды и силициды. В структуре атомного кристалла невозможно выделить отдельные молекулы, весь кристалл можно рассматривать как одну гигантскую молекулу. Поскольку ковалентные связи весьма прочны, все вещества, имеющие атомные решетки, являются твердыми, тугоплавкими, малолетучими. [c.155]

    Токи, связанные с орбитальным движением электрона и с его спином, взаимодействуют друг с другом. Каждый из этих токов создает магнитное поле, которое воздействует на другой ток. Взаимодействие магнитных полей, создаваемых токами, обусловливает зависимость орбитального и спинового моментов количества движения совокупности электронов, его называют спин-орбитальным взаимодействием или спин-орвитальнай связью. Энергия спин-ор-битального взаимодействия много меньше разности энергетических уровней электронов, но, несмотря на это, она оказывает существенное влияние на стационарные состояния атома. Это влияние приводит к снятию вырождения состояний с одним и тем же квантовым числом орбитального движения. Подобное снятие вырождения служит основьюй причиной появления тонкой структуры атомных спектров (см. разд. 3.9) в отсутствие внешних полей. Строгое рассмотрение спин-орбитального взаимодействия возможно при решении релятивистского уравнения Дирака. Однако полуклассический подход позволяет выявить наиболее важные детали этого эффекта. [c.77]

    В табл. 9.2 типичные для органических структур атомные группы сопоставлены с изолобальными и электроноэквивалентными им группами переходных металлов. [c.354]

    Полный орбитальный и спиновый моменты количества движения в атоме не независимы друг от друга, так как каждый из них сопряжен с собственным магнитным моментом. Взаимодействие магнитных полей, создаваемых этими моментами, называется спин-орбитальным взаимодействием. Оно обусловливает ряд тонких эффектов, связанных с дополнительным расщеплением атомных термов, и позволяет объяснить тонкую структуру атомных спектров, в частности дублетную структуру спектров щелочных металлов. Строгое рассмотрение спин-орбитального взаимодействия возможно при решении релятивистского уравнения Дирака. Однако полуклассический подход позволяет выявить наиболее важные детали этого эффекта. [c.70]

    В сложном атоме содержится несколько электронов, и для характеристики состояния такого атома целесообразно суммировать векторы, выражающие орбитальные и спиновые моменты отдельных электронов. При необходимости yчитывJ ть спин-орбитальное взаимодействие надо суммировать векторы Е м 3 для всех электронов, а затем взять их общую векторную сумму (число /). Атомное ядро имеет свой спин (внутренний момент) он может принимать значения, кратные все той же величине /г/2я (целые или по-луцелые кратные значения). Этот спин определяют из сверхтонкой структуры атомных спектров методами радиоспектроскопии и иными способами. [c.80]

    Физические свойства. Металлы имек т кристаллическую структуру, и для них характерны три типа кристаллических решеток кубическая гранецентрированная, гексагональная и кубича кая объемно центрированная (рис. 27). Они являются плотноупакованными структурами. В кубической плотноупаковашюй структуре атомные слои чередуются таким образом, что лишь четвертый по счету слой повторяет первый слой, т. е. характерно чередование по 1ипу AB AB ,. .., где А, В, С — условные обозначения С]юев. Многие металлы кристаллизуются в одной из двух кубических структур. Так, кристаллы щелочных металлов имеют кубическую объемно центрированную структуру, а металлы восьмой группы — кубическую гранецентрированную. [c.257]

    Обычно для атомов расщепления термов с различными ] невелики, что определяет тонкую структуру атомных спектров. Гораздо большие расщепления возникают в тех случаях, когда на исходной вырожденной оболочке находится не один электрон, а несколько. [c.410]

    Теория конденсированной матфии, в особеиностн жидкого гелия Вклад в теорию атомного ядра и элементарных частиц Открытие оболочечной структуры атомного ядра [c.778]

    Наиболее известным зеркальным интерферометром является интерферометр Майкельсона (1882 г.) [29, 30] (фиг. 31), который псиользуется главным образом для измерения длин и исследования поверхностей. Он не очень удобен для измерений в прозрачных объектах, за исключением измерений коэффициентов рефракции газов и жидкостей. Измерительный пучок дважды пересекает исследуемый объект по различным траекториям, обусловленным отклонением пучка вследствие градиента коэффициента рефракции в исследуемом объекте. Это усложняет обработку таких интерфе-рограмм. Кроме того, интерферометр Майкельсона применяется в исследованиях тонкой структуры атомных спектров и классическом опыте Майкельсона [31]. Модифицированные зеркальные интерферометры используются главным образом для оценки оптических элементов (линз, зеркал), как, например, интерферометр Тваймана—Грина [32], аналогичный интерферометру Майкельсона, и интерферометр для определения искажений волнового фронта (Бэйтс [33]), аналогичный интерферометру Маха—Цендера. [c.76]

    Удачное объяснение строения атома предложил в 1913 г. Нильс Бор, который прославился этой и другими работами в области атомной физики. Бор свел воедино несколько хорошо установленных, но разобщенных фактов и теорий—линейчатую структуру атомных спектров, классическую механику, электростатику и новую идею Планка о квантовании энергии [см. уравнение (2.5)]. Согласно вьщвинутой Бором модели, электрон в атоме водорода приобретает или теряет энергию только целочисленными квантами. При этом электрон перескакивает с одного энергетического уровня на другой, скажем с на Е2, и поглощаемое или испускаемое атомом в результате этого излучение должно обладать такой частотой, чтобы выполнялось соотношение [c.69]

    Существуют два типа плотноупакованных структур. В гексагональной плотноупакованной структуре атомы располагаются в плотноупакованных слоях, чередующихся друг с другом по типу АВАВ..., как это показано на рис. 1< .17, а. В кубической плотноупакованной структуре атомные слои чередуются несколько по-иному. В данном случае лишь четвертый по счету слой содержит атомы, расположенные точно над атомами первого слоя, так что возникает чередование слоев типа АВСАВС..., показанное на рис. 10.17,6. Атомы кубической плотноупакованной [c.179]

    Известно, что для электрона М равно 9,268эрг/гс н I (обычно обозначаемое через з) равно. В связи с этим частота, необходимая для того, чтобы наблюдался электронный магнитный резонанс, составит 2МН к=2,1Ш х X 10 ЛГ сек что в поле с напряженностью //=10 гс даст частоту, лежащую в микроволновой области спектра. Для протона I также равно Уг, но М примерно в 2000 раз меньше, чем для электрона, и частота, необходимая для]резонансного поглощения в магнитном поле той же сплы, составит около 10 сек" , т. е. будет лежать в области радиочастот. Электромагннтноеизлучение в микроволновой и радиочастотной областях спектра можно получить с высокой степенью точности, и поэтому точное значение М/1, выражаемое уравнением (45), определяется точностью измерения величины Н. Опыты обычно проводятся с постоянной величиной V, а напряженность поля И изменяется таким образом, чтобы получить оба пика поглощения. В табл. 15 приведены некоторые из данных, содержащихся в работе Виффена [38]. Спиновые квантовые числа можно рассматривать либо как следствие квантовой теории, либо как эмпирические постоянные, необходимые для истолкования сверхтонкой структуры атомных спектров. [c.230]

    Открытие нейтрона привлекло к с бе пристальное внимание физиков. Возник вопрос какую роль играют нейтроны в Tpyji-туре атомного ядра В мае 1932 г. советский физик Д. Д. Иваненко (1904) выступил с идеей, что нейтроны наряду с протонами входят в структуру атомного ядра. Через две недели эта же идея была высказана В. Гейзенбергом (1901) и вскоре получила всеобщее признание. [c.218]

    Активационный анализ (АА) относится к основным ядерно-физическим методам обнаружения и определения содержания элементов в различных природных и техногенных материалах и объектах окружающей среды [1—9]. Метод базируется на фундаментальных понятиях и данных о структуре атомных ядер, сечениях ядерных реакций, схемах и вероятностях распада радионуклидов, энергиях излучения, а также на современных способах разделения и предварительного концентрирования микроэлементов. Широкое распространение АА получил благодаря таким преимуществам перед другими методами, как низкие пределы обнаружения элементов (10 -10 г), экспрессность и воспроизводимость анализа, возможность неразрушающего одновременного определения в пробе 20 и более элементов [5, 7-13]. Применение специальных химических методик и аппаратурных приемов позволяет определять фоновое содержание металлов в приземном слое атмосферы [3], следовые количества примесей в биологических объектах, особо чистых веществах [6,91 и устанавливать химическую форму элементов в исследуемьк пробах [10]. Большое значение имеет возможность проведения анализа в диапазоне массы образцов от нескольких микрограммов (важно для труднодоступных образцов, например, метеоритов или лунного грунта) до нескольких сотен граммов. Следует отметить, что относительная погрешность определения содержания элементов в пробах активационным методом не выходит за пределы 10%, а воспроизводимость составляет 5-15% и может быть доведена до 0,1-0,5% при серийных анализах [2]. [c.3]

    В ААС принципиально новым моментом по сравнению с АЭС является наличие в приборе источников внешнего излучения. Главное требование, предьявляемое к ним, — высокая степень монохроматичности излучения, обусловленная узкополосной структурой атомных спектров поглощения (ширина линий порядка 10 —10" нм). [c.244]

    Инфракрасный спектр полиина (рис. 1, б) включает полосы поглощения, характерные как для полииновой (полосы при 1250, 2100, 2200, 3250 и 3300 лi- ), так и для кумуленовой структуры атомных цепочек углерода. Ряд полос в спектре (при 1400, 1640, 2850 и 2920 сл- ), вероятно, связан с частичным образованием сопряженной (полиеновой структуры при взаимодействии полииновых цепей [3, 4]. Совокупность полос в инфракрасном спектре изученных образцов полиина, однако. [c.265]


Смотреть страницы где упоминается термин Структура атомная: [c.19]    [c.58]    [c.200]    [c.208]    [c.480]    [c.298]    [c.89]    [c.162]   
Учебник общей химии (1981) -- [ c.89 ]

Учебник общей химии 1963 (0) -- [ c.54 , c.77 , c.78 , c.418 ]

Теоретические основы общей химии (1978) -- [ c.7 , c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Алмаз атомная структура

Алюминий, атомный и катионный радиусы электронная структура

Атомная единица массы структура квантовая теория

Атомная масса структура

Атомная структура и атомные спектры

Атомная структура поверхности

Атомная структура стекла

Атомная структура ядер ферритина

Атомное ядро структура

Атомные радиусы л структуры металлов. Закон Вегарда. Концентрация электронов и структура фа

Атомные спектры, тонкая структура

Атомных оболочек структуры

Барий, атомный и катионный радиусы электронная структура

Бериллий, атомный и катионный радиусы электронная структура

Бор, атомный и ионный радиусы электронная структура

Варианты структуры атомной энергетики

Гибридизация атомных орбиталей геометрические структуры молекул

Граница зерна атомная структура

Зависимость между зонной структурой и атомным строением в методах ППВ, функций Грина, ОПВ и ЭП

ИЗОТОПНЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ изотопическая и сверхтонкая структура в атомных и молекулярных спектрах Структура спектральных линий

Косвенное разрешение атомно-кристаллической структуры методом муара

Математическое моделирование атомной структуры двойниковых границ

Математическое моделирование атомной структуры двойниковых и межфазных границ и ядер двойникующих дислокаций

Математическое моделирование атомной структуры двойниковых межфазных гранил

Математическое моделирование атомной структуры ядра двойникующей дислокации

Металлы атомная структура

Моменты атомных ядер и сверхтонкая структура спектральных линий

О попытках интерпретировать типы структур и границы взаимной растворимости элементов при образовании твердых растворов замещения, исходя из размеров и отношений атомных радиусов

Описание атомной структуры простых (одноатомных) жидкостей и методы их анализа

Орбитали атомные, геометрическая структура

Основные типы кубических структур. Атомные радиусы, плотность упаковки, координационные числа в металлических решетках и в алмазе. Гексагональная плотная упаковка

П риложения Элементарное изложение теории атомной и молекулярной структуры

Первые определения атомных структур кристаллов при помощи рентгеновских лучей

Природа химической связи Атомная структура

Радиусы атомные t н структура кристалла

Радиусы атомные п структура металлов н еле

СИММЕТРИЯ И АТОМНАЯ СТРУКТУРА КРИСТАЛЛОВ Белов ЭЛЕМЕНТАРНЫЕ СИЛИКАТНЫЕ КИРПИЧИ

СТРУКТУРА, РЕАКЦИОННАЯ СПОСОБНОСТЬ И МЕХАНИЗМЫ РЕАКЦИИ 1 Атомные орбитали

Сверхтонкая структура в атомных спектрах

Структура атомный плотности

Химические элементы структура атома и атомный номер

Электронная структура атомных соединений

Электронная структура атомов и катализ в смешанных атомных слоях



© 2025 chem21.info Реклама на сайте