Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо диаграммы состояния

Рис. XIV, 14. Диаграмма состояния системы железо—углерод. Рис. XIV, 14. <a href="/info/677850">Диаграмма состояния системы железо</a>—углерод.

Рис. 32.7. Часть диаграммы состояния железо—углерод. Рис. 32.7. Часть диаграммы состояния железо—углерод.
    Диаграмма состояния системы железо — углерод [c.414]

    Современный вид диаграммы состояния железо—углерод представлен на рис. XIV, 14. В ее создании принимали участие многие отечественные и зарубежные исследователи. Диаграмма охватывает область составов от О до 6—7% углерода. Буквы, отмечающие различные точки диаграммы, приняты в качестве стандартных обозначений во всей научной литературе. [c.415]

    Изменения фазового состава и структуры железоуглеродистых сплавов, то есть системы железо—углерод в зависимости от температуры при различном содержании компонентов в ней представлены на упрощенной (не учитывающей существование р - и 5-форм железа) диаграмме состояния этой системы (рис. 3.1). Буквенные [c.40]

    Диаграмма состояния системы железо — углерод. В 1868 г. Д. К. Чернов впервые указал на существование определенных температур ( критических точек ), зависящих от содержания углерода в стали и характеризующих превращения одной микроструктуры стали в другую. Этим было положено начало изучению диаграммы состояния Ге—С, а 1868 г. стал годом возникновения металловедения — науки о строении и свойствах металлов и сплавов. Позже Ф. Осмонд уточнил значения критических точек и описал характер микроструктурных изменений, наблюдаемых при переходе через эти точки. Он дал названия важнейшим структурам железоуглеродистых сплавов эти названия употребляются до сих пор. [c.617]

    Физические свойства железа. Диаграмма состояния системы железо — углерод. В 30-х годах XIX века русский инженер П. П. Аносов впервые применил микроскоп для изучения структуры стали й ее изменения после ковки я термической обработки. В 60-х годах XIX века подобные исследования стали проводиться и за границей. [c.673]

    Основу аустенитной жаропрочной стали печных труб составляет железо (более 45%). Входящие в сплав легирующие элементы оказывают существенное влияние иа жаропрочность н жаростойкость стали. Одни.м из важнейших легирующих элементов является хром. Содержание его в сталях печных труб колеблется в пределах 18—30%. При введении хрома повышаются жаропрочность, сопротивление ползучести и длительная прочность, а также увеличивается сопротивление окислению. Сталь, содержащая хром, на диаграмме состояния системы Ре—Сг может характеризоваться замкнутой областью (петлей) 1)-твердых растворов, обладающих устойчивой структурой материала. [c.29]


    Рис, 173 Часть диаграммы состояния систсмы железо —углерод. [c.683]

    Нагрев труб при выжиге кокса до критической температуры 780 " С приводит к изменению фазового состояния металла, что видно из диаграммы состояния сплавов Fe—С. Фаза железа a-Fe переходит в фазу y-Fe. Этот переход связан со снижением прочности стали, вызывает остаточные деформации и чрезмерное образование окалины, т. е. ускоренный износ печных труб. [c.194]

    На рис. 3.124 представлена диаграмма состояния системы железо — углерод. Твердые фазы и их смеси в этой системе имеют специальные названия. [c.558]

    Левая часть диаграммы (до точки Е) описывает превращения, происходящие в сталях, то есть в сплавах с содержанием углерода до 2,14%. Правая часть — превращения, происходящие в чугунах — сплавах с содержанием углерода от 2,14 до 6,67%. Так как цементит (карбид железа РедС) представляет собой как химическое соединение самостоятельный компонент системы, диаграмма состояния ограничивается этим содержанием углерода. К тому же, сплавы, содержащие более 6,67% углерода, практического значения не имеют. Таким образом, в диаграмме левая ордината характеризует чистое железо в а-модифика-ции до точки О и в у-модификации в интервале точек О и А. Правая ордината соответствует цементиту. [c.41]

    Диаграмма состояния системы Fe—С сложнее, чем рассмотренные ранее основные типы диаграмм состояния металлических систем. Однако все ее точки, кривые и области подобны тем, которые были описаны в разд. 12.2. Особенности ее обусловлены уже упомянутыми обстоятельствами существованием двух модификаций кристаллического железа, способностью этих модификаций образовывать твердые растворы с углеродом, способностью железа вступать в химическое соединение с углеродом, образуя цементит. [c.619]

    Диаграмма состояния железо—углерод позволяет проанализировать сущность превращений, происхоляптх в железо-углеродных сплавах при нагреве и охлаясдении и, исходя из этого, выбрать соответствующие режимы термической обработки сталей и чугунов с целью придания им определенных свойств и структуры. [c.43]

    При охлаждении аустенит делается термодинамически неустойчивой фазой при температурах ниже 727° С термодинамически устойчив перлит или перлит с избытком феррита или цементита. Чем больше переохлаждение, тем больше разность энергий Гиббса аустенита и перлита, стимулирующая превращение. Но, в то же время, чем больше переохлаждение (т. е. чем ниже температура), тем медленнее протекает диффузия атомов. В результате одновременного действия этих противоположных тенденций скорость превращения аустенита в перлит оказывается максимальной при небольших переохлаждениях, т. е. при медленном понижении температуры. При больших же переохлаждениях, при быстром снижении температуры, скорость диффузионных процессов приближается к нулю и превращение становится невозможным. Однако кристаллическая решетка же,леза перестраивается при любой скорости охлаждения, так что в результате понижения температуры 7-железо превращается в /3- и а-железо. Таким образом, в основе закалки стали лежит превращение аустенита в пересыщенный твердый раствор углерода в а-железе. Эта фаза носит название мартенсита, будучи термодинамически неустойчивой, она не находит отражения на диаграмме состояния. [c.626]

    Диаграмма состояния системы железо—углерод, дающая представление о строении железоуглеродных сплавов, имеет очень большое значение. С ее помощью можно объяснить зависимость свойств сталей и чугунов от содержания в них углерода и от термической обработки. Она служит основой при выборе железоуглеродных сплавов, обладающих теми пли иными заданными свойствами. На рис. 32.2 приведена часть диаграммы состояния системы Fe—С, отвечающая содержанию углерода от О до 6,67%, или, что то же самое, от чистого железа до карбида РезС. Это самая важная часть диаграммы, поскольку практическое применение имеют сплавы железа, содержащие не более 5% углерода. [c.619]

    Основным элементом, определяющим свойства и структуру сталей этого типа, является углерод. Содержание его колеблется от 0,025% (электротехническая сталь типа армко, обозначаемая буквой А) до 1,4% стали с высоким содержанием углерода обозначаются обычно так У8, УП, У13 и т. д. (цифра означает содержание углерода в десятых долях %). Сортность стали определяется временным сопротивлением разрыву, пределом текучести, твердостью и другими механическими свойствами. Последние могут быть изменены посредством закалки и отпуска при различных температурах. Эти процессы могут быть поняты при детальном рассмотрении диаграммы состояния железо—углерод , подробно изучаемой в курсах металловедения. [c.352]

    Большое значение в метал лургии имеет диаграмма состояния системы железо—углерод, дающая возможность сознательно намечать пути исследований для создания различных сортов сталей и чугуна. Начало исследованиям системы железо—углерод было положено работами Н. П. Аносова 1831 —1841 гг. и Д. К- Чернова 1868—1869 гг., которые устано-мнлн, что сталь и чугун обладают кристаллической структурой. В качестве убедительного доказательства кристаллической структуры стали Чернов приводил мелкие и крупные разветвленные [фисталлическпе образования— дендриты, находимые в медленно охлажденных стальных слитках.  [c.414]


    Расплавы, содержащие от О до 1,75% углерода, после быстрого охлаждения приблизительно до 1150 С, представляют собой однородный твердый раствор—аустенит. Из этих сплавов получается сталь. При содержании углерода более 1,75% после охлаждения до 1150°С, кроме твердого аустенита, имеется еще жидкая эвтектика, которая кристаллизуется при этой температуре, заполняя тонкой смесью кристаллов пространство между кристаллами аустенита. Получающиеся при этом твердые системы представляют собой чугун. Эвтектика может кристаллизоваться двумя способами. При быстром охлаждении затвердевшая эвтектика состоит из кристаллов аустенита и неустойчивых кристаллов Fea , называемых чвл(е тито.и. При медленном охлаждении образуется смесь кристаллов аустенита и устойчивого графита. Температуры кристаллизации этих двух эвтектик и их составы неодинаковы. Устойчивой эвтектике отвечает точка С, а неустойчивой—точка С. Таким образом, система железо—углерод дает, в сущности говоря, две диаграммы состояния. Общий вид их одинаков, но они лишь частично накладываются одна на другую. Сплошными линиями принято изображать диаграмму, получаемую при участии неустойчивого цементита, Линии диаграммы железо—графит, не совпадающие с соответствующими линиями диаграммы железо—цементит, даются пунктиром. Чугун, содержащий цементит, называется белым, а содержащий графит—серым. При средней скорости охла-Ждения возможно одновременное образование обоих типов—такой чугун называется половинчатым. [c.415]

    Примером диаграммы состояния двойной системы, более сложной, чем диаграмма железо—углерод, мом<ет служить диаграмма системы медь—цинк (рис. XIV, 15). Сплавы меди с цинком при затвердевании дают шесть твердых растворов различной структуры а, р, - , В, е и т]. Твердые растворы р,8,е являются примерами бертоллидов. Зг атрихованные области диаграммы отвечают двухфазным системам, образов иным соответственно твердыми растворами а+р, [5+7, Р +т, 7+8 и т. д. Медь и цинк дают только одно химическое соединение (дальтонид) Си22пз. [c.417]

    Диаграмма состояния системы железо — углерод, дающая представление о строении железоуглеродных сплавов, имеет очень большое значение. С ее помощью мол<но объяснить зависимость свойств сталей и чугунов от содерл<ання в них углерода и от термической обработки. Она служит основой при выборе железоуглеродных сплавов, обладающих теми или иными заданными свойствами. Ниже (рис. 168) приведена часгь диаграммы состояния системы Ре — С, отвечающая концентрации углерода от О до 6,67%, или, что то же самое, от чистого железа до карбида Ре С. [c.674]

    Диаграмма состояния системы Ре—С сложнее, чем рассмотренные в главе XVI основные типы диаграмм состояния металлических систем. Однако все ее точки, кривые и области подобны тем, которые были описаны в 195. Особенности ее обусловлены уже упомянутыми обстоятельствами сущестрованием двух модификаций кристаллического железа, способностью обеих этих моди( )икацнй [c.675]

    Карбиды, силиды. Железо с углеродом образует два соединения— крайне неустойчивый карбид состава Fea , который обычно переходит в карбид состава РезС, называемый цементитом-, последний также термодинамически неустойчив, но при растворении в железе его устойчивость повышается и в составе различных сталей находится именно цементит. Энтальпия образования цементита + 25 кДж/моль, энергия Гиббса образования +18,8 кДж/моль. Цементит представляет собой серые кристаллы ромбической системы, очень твердые, с плотностью 7,7 г/см и температурой плавления 1560°С энтропия Ре С 108 Дж/(моль-К). В воде не растворяется, с кислотами реагирует е выделением водорода. Цементит хорошо растворим в Y-железе, меньше — в б-железе и совсем мало в Oi-железе. Иэ диаграммы состояния еистемы Ре — РезС (рис. 50) видно, как изменяется растворимость цементита в железе в зависимости от температуры. Твердый раствор цементита в v-железе называется аустенитом. Растворимость цементита в 7-железе при эв- [c.305]

    В период 1868—1876 гг. Д.К. Чернов проводит цикл исследований по установлению взаимосвязей между тепловой обработкой стали, ее структурой и свойствами и создает теорию кристаллизации стали. В ряде работ он формулирует основы современного металловедения, теорию термической обработки стали, устанавливает значения критических точек в диаграмме состояния железо—углерод . В 1891 году выходит в свет его курс Сталелитейное дело — первый в России труд по металловедению. В последующие годы исследования Ф. Осмонда, Р. Остена, A.A. Байкова, Н.Т. Гуд-цова и П.Геренса позволили уточнить диаграмму состояния железо-углерод и вместе с работами М.А. Павлова, Н.С. Курнако-ва и И.П. Бардина создать теоретический фундамент доменного и [c.49]

    Известно, что сплавы системы Ре — С кристаллизуются либо по стабильной, либо по метастабильной диаграмме состояния. При малых скоростях охлаждения кристаллизация происходит по стабильной диаграмме — образуется эвтектика, состоящая из графита и аустенита (твердого раствора углерода в у-железе). При больших скоростях охлаждения, когда кристаллизация идет по метастабильной диаграмме, эвтектика состоит из аустенита и цементита РезС. [c.195]

    Диаграммы состояния, отражающие химическую природу взаимодействия компонентов, служат в современной технике научной основой выбора сплавов для промышленности. Например, система железо — углерод, сплавы которой — стали и чугуны — являются основой черной металлургии. Диаграмма состояния системы железо — углерод (рис. 13.9) подробно изучена до 6,66 мае. /о углерода, т. е. до химического соединения цементита РезС, и представляется -обычно в виде двух диаграмм Ре—РезС (цементитная) или Ре—С (графитная). Эти диаграммы простые эвтектические. Линия ликвидуса состоит из двух ветвей, пересекающихся в точке при 4,3% углерода. [c.274]

    Диаграмма состояния системы железо — углерод дает возможность рационально классифицировать технические сплавы железа с углеродом на стали и чугуны. Сталями называются сплавы, содержащие до 1,7% углерода, т. е. такие, которые не содержат эвтектики у+РезС, называемой ледебуритом. Сплавы с содержанием углерода больше 1,7% называют чугунами. В них присутствует эвтектика ледебурит. [c.274]


Смотреть страницы где упоминается термин Железо диаграммы состояния: [c.673]    [c.382]    [c.415]    [c.673]    [c.684]    [c.306]    [c.40]    [c.532]    [c.150]   
Коррозия и защита от коррозии (2002) -- [ c.180 , c.185 , c.187 , c.189 ]

Коррозия и защита от коррозии Изд2 (2006) -- [ c.180 , c.185 , c.187 , c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Диаграммы состояния



© 2025 chem21.info Реклама на сайте