Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дросселирование

Рис. П-1. Двухпоточный узел ввода сырья в колонну без сепарации (а) и с сепарацией фаз после дросселирования (б). Рис. П-1. Двухпоточный <a href="/info/1741546">узел ввода сырья</a> в колонну без сепарации (а) и с сепарацией фаз после дросселирования (б).

    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]

    Жидкости, подвергаемые большим механическим воздействиям, в той или иной мере теряют свои первоначальные свойства. Вязкость минеральных жидкостей при длительном действии высоких давлений, и особенно дросселирования с большим перепадом давлений, значительно (до 50% первоначального значения) понижается. Одновременно может ухудшаться смазывающая способность жидкости, о происходит в результате механической деструкции молекул жидкости крупные молекулы жидкости, особенно вязкостных присадок, при длительном механическом воздействии разрушаются на более мелкие части. [c.213]

    Однократная перегонка мазута проводится обычно в вакууме при нагреве мазута в трубчатых печах до температуры ниже температуры начала термического разложения тяжелых фракций с последующим движением парожидкостной смеси в трансферном трубопроводе и сепарации образовавшихся фаз в разделителе или в секции питания вакуумной колонны. При перегонке в глубоком вакууме потери напора в трансферном трубопроводе становятся соизмеримыми с давлением в разделителе, и перепад температур в трансферном трубопроводе достигает 20—30 °С. В связи с этим простую вакуумную перегонку мазута следует рассматривать как процесс изоэнтальпийного расширения смеси при дросселировании. При этом расчет температуры и доли отгона мазута на входе в фазный разделитель необходимо проводить одновременно с гидравлическим расчетом трансферного трубопровода. Кроме того, следует учитывать, что на входе в фазный разделитель не достигается состояние равновесия из-за малого времени пребывания парожидкостной смеси в трансферном трубопроводе и большего объема паров по сравнению с жидкостью. [c.74]


    Около 25% угольной пасты, введенной в реакционные колонны жидкой фазы, выделяется в виде щлама с содержанием 34— 38% твердых веществ, состоящих иэ золы, катализатора и других твердых веществ. Выделяющийся при дросселировании щлама газ направляется в сборные емкости бедного газа. Дальнейшая переработка шлама после его дросселирования производится в две ступени. Сначала шлам разбавляют остатком дистилляции угольного гидрюра до 18%-кого содержания твердых веществ и направляют на центрифугирование. На второй ступени из остатка центрифугирования полукоксованием удаляют масло полученное центрифугированием масло (масло фугования) используется как компонент затирочного масла, т. е. для приготовления пасты. В масле фугования содержатся значительные количества асфаль-тенов, которые таким образом возвращаются в реакторы угольного блока. Анализ процесса переработки щлама показывает, однако, что при рассмотренных выше условиях гидрогенизации асфальтены не перерабатываются полностью, поэтому при циркуляции они будут накапливаться в системе (фактически при процессе гидрогенизации разложения асфальтенов происходит лишь при давлении 400 ат и выше). [c.38]

    Для абсорбции применяется среднее масло процесса гидрогенизации. После насыщения этого масла газообразными углеводородами его подвергают дросселированию в две ступени. Сначала масло дросселируют до давления 25 ат, причем выделяются главным образом водород, метап и некоторое количество этана наряду с азотом. Эти газы направляются в сборник бедного газа, где они смещиваются с бедным газом, поступающим с других установок. Суммарный бедный газ после очистки от сероводорода поступает в сеть топливного газа. [c.36]

    Богатый газ, выделяющийся при дросселировании промывного масла с 25 до 1 ат, имеет следующий состав (в %)  [c.36]

    На второй ступени дросселирование ведется до 4 ат. Это давление [c.37]

    Водород, как и на жидкой фазе, циркулирует в системе при помощи газового циркуляционного насоса. Масляная абсорбция циркуляционного газа по типу применяемой в процессе жидкофазной гидрогенизации в данном случае вследствие значительно меньщего газообразования не является необходимой. Количество бедного и богатого газов, выделяющихся при ступенчатом дросселировании, здесь соответственно меньще, чем на жидкой фазе. Горячего сепаратора нет, так как в продукте полностью отсутствуют твердые вещества. [c.40]

    И в этом случае дросселирование проводится в несколько ступеней. Бедные газы выделяются при снижении давления с 250 до 25 ат, а богатый при снижении давления с 25 до 4 ат. Под давлением 4 ат продукты из сепаратора предварительного гидрирования передавливаются в промежуточный резервуар (на схеме не показан), где выделяются остаточные газы. Кроме того, при дистилляции гидрюра также выделяются дополнительные газы. Газы, выделяющиеся при дистилляции и иэ резервуара, поступают в тот же самый сборный резервуар, куда направляются и богатые газы дросселирования с 25 до 4 ат, так как они также представляют собой богатые газы, содержащие в большинстве случаев еще более тяжелые компоненты, чем газы, выделяющиеся в промежуточном резервуаре. [c.41]

    В этой смесительной камере хлор смешивается с подаваемым газодувкой свежим этаном, предварительно нагретым (также до 60°) в- подогревателе 4. Перед подогревателем в точке 5 к свежему этану добавляется циркулирующий этан, т. е. этан, выделенный из продуктов реакции в результате дросселирования в колонне I. Соотношение количеств свежего и циркулирующего этана составляет около 2 1. [c.172]

    Перед конденсатором дросселированием выделяют циркулирующий газ. Он состоит из этана, содержащего около 2% этилена, присутствующего в качестве примеси в свежем этане. Этот газ снова возвращается на хлорирование. [c.174]

    После конденсатора дросселированием выделяют остаточный газ, содержащий около 10% этилена. Путем дросселирования остаточного газа одновременно регулируются давления в ректификационной колонне. [c.174]

    К более сложным в аппаратурном оформлении, но и более эффективным, относятся циклы, основанные на сочетании дросселирования и расширения газа в детандере  [c.134]

    Дросселирование встречается практически во всех многоступенчатых схемах разделения нефтяных смесей с понижением давления в последующей ступени разделения. Заметное дросселирование потока будет иметь место также в том случае, когда перепад давления потока в трубопроводе соизмерим с давлением в системе. Такая картина, в частности, отмечается при движении мазута в трансферном трубопроводе от печи до вакуумной колонны. [c.55]

    В том случае, когда летучести компонентов разделяемой смеси различаются значительно и остаток представляет собой смесь тяжелых углеводородов со смолисто-асфальтеновыми соединениями, разделение методом дросселирования может вызвать достаточно резкое понижение температуры и увеличение вязкости остатка. [c.55]

    Например, дросселирование в адиабатических условиях продуктов полимеризации фракции Сд и выше (полимербензина), содержащего от 30 до 50% (масс.) смолистых веществ, с давления 1,4—4,2 МПа при 180 °С до давления 0,35— 0,70 МПа приводит к понижению температуры остатка до 120 °С при этом вязкости сырья 0,35 мПа-с соответствует вязкость остатка 0,7—1,0 Па с. Для поддержания низкой вязкости остатка в этом случае необходимо нагревать его до начальной температуры сырья с помощью рециркуляции через подогреватель 1 (см. рнс. 1-21, б) [56].  [c.55]

    При расчете процесса дросселирования определяют не только доли отгона или конденсации смеси и составы образовавшихся фаз, но и понижение температуры уходящих потоков. Исходными данными для расчета процесса дросселирования являются состав сырья, начальные давления и температура и давление после дросселирования. Расчет выполняют путем совместного решения уравнений (1.13) и (1.14), а также уравнения теплового баланса адиабатического процесса расширения смеси [c.64]


    Расчет однократной перегонки с водяным паром без подвода тепла в систему аналогичен расчету процесса дросселирования, т. е. решению системы уравнений (1.13) и (1.16). [c.65]

    Применение сложных ректификационных систем наиболее эффективно при разделении углеводородных газов и особенно легких углеводородов, фазовые превращения которых при дросселировании потоков сопровождаются заметными тепловыми эффектами. [c.106]

    В тепловом насосе на нижнем продукте в качестве хладоагента используется остаток (см. рис, П-6, в), который после охлаждения в теплообменнике 2, дросселирования в дросселе вторично охлаждается и испаряется в подогревателе колонны 4. Пары хладоагента нагреваются в теплообменнике 2, компримируются и в качестве отгонного пара подаются в низ колонны. Недостаток холода дросселированного остатка восполняется внешним хладоагентом в конденсаторе 1. [c.111]

    В схемах на рис. П-8, б и б в качестве циркулирующего хладоагента используется пар или жидкость с промежуточных сечений соответственно концентрационной или отгонной секции колонны. Если отбирается пар с промежуточного сечения верхней секции колонны (рис. П-8, б), то он компримируется и используется как теплоноситель в промежуточном 2 и концевом подогревателях колонны 5. Сконденсированный пар после охлаждения в теплообменнике и дросселирования в виде флегмы подается в то же сечение колонны. Если же отбирается жидкость с промежуточного сечения нижней секции колонны (рис. П-8, в), то она [c.112]

    Мотопилы. Двигатели мотопил имеют более высокую степень сжатия и тем самым меньшее дросселирование выхлопных газов. Их выхлопные газы должны быть как можно менее ядовитыми и бездымными, так как они выпускаются в непосредственной близости от оператора. Применение синтетического масла (полибутена, полиэфиров) и полимерных загустителей вместо остаточного базового масла позволяет не только снизить вредность, но и дымообразование и, кроме того, соотношение масло топливо. Окружающая среда, в которой работают бензопилы, требует высокой биоразлагаемости остатков масла. Некоторые производители бензопил требуют применения для их машин специальных масел. Некоторые масла имеют надписи об их пригодности для бензопил. [c.123]

    Принципиальная схема каскадного цикла приведена на рис. 44. Пары хладагента первой ступени (/) конденсируются водой или воздухом и после расширения в дроссельном устройстве поступают в испаритель для конденсации паров хладагента второй ступени (II). Сконденсированный хладагент второй ступени после дросселирования поступает, в свою очередь, на конденсацию хладагента третьей ступени (природного газа). [c.132]

    Непосредственное охлаждение основано на использовании дроссельного или детандерного расширительных циклов в различном сочетании. Из термодинамики известны холодильные циклы, основанные иа дросселировании, — циклы Линде  [c.134]

    Получение низкой температуры сепарации достигалось дросселированием газа с избыточного давления. [c.153]

    Продукты реакции выводятся через верх реактора жидкой фазы и поступают в так называемый горячий сепаратор, где из них выделяются оставшиеся твердые вещества. Горячий сепаратор лишь частично заполнен маслом и работает при температуре 360—370°. Несмотря на высокое давление вследствие избыточного количества водорода, эначи-тельная часть всех углеводородов испаряется, а твердые вещества осаждаются в виде шлама, который выводится из системы (дросселирование). Уровень жидкой фазы в горячем сепараторе поддерживается автоматически. Углеводородные пары из горячего сепаратора вместе с водородом отводятся через теплообменник во второй сепаратор и далее через холодильник в так называемый холодный или продуктовый се- [c.36]

    Из сепараторов жидкий продукт направляется в так называемые емкости дросселирования, в которых в результате снижения давления выделяются и отделяются от жидких компонентов, растворенные в углеводородной смеси гаэы. Как и в случае промывки циркулирующего газа, дросселирование проводится в две ступени. При первой ступени дросселирования с 250 до 50—25 ат выделяются главным образом труднорастворимые и наиболее трудно ожижаемые давлением газы, как водород, азот, метан и т. д. (бедный газ). Газы жидкой фазы гидрогенизации, выделяющиеся при дросселировании до 25 ат, имеют примерно следующий состав (в %)  [c.37]

    При дросселировании с 25 до 4 аг и с 4 до 1 ат также выделяются богатые газы с высоким содержанием углеводородов. Они объединяются с богатыми газами масляной промывки циркуляционного газа жидкой фазы и вследствие высокого содержания в них углекислоты и сероводорода, характерного для богатых гаэов жидкой фазы, направляются на специальную очистку, после которой поступают в общий газгольдер для богатых газов гидрогенизации. [c.37]

    Низкие температуры верха колонны (от —70° до —100°) достигаются дросселированием выделенного жидкого этана. Дросселированием до 1 ат достигается температура —70°, дросселирование с вакуумом позволяет довести охлаждение до —100°. Часть этана, дросселированного до 1 ат, охлаждают аммиаком. Охлажденный остаточный газ этановой колонны, состоящий главным образом из метана и водорода, отдает свое холодосодержание в противоточном регенераторе (теплообменнике) обогащенному этаном газу. При этом последний нагревается до 150° и испольэуется для регенерации силикагелевого осушителя. [c.44]

    Переработка продуктов реакции. Н ахо дящиося в сбориике полу-тпердые продукты дросселируют для испарения хлористого Бодорода и хлора. Дросселирование сопровождается охлаждением смеси, чем одн о временно устраняется опасность потери четыреххл1ор истого углерода. [c.190]

    С верха колонны по трубе /V рафинат поступает в конденсационный горшок Л. Этот горшок препятствует дросселированию давления газа в колонне и одновременно обеспечивает свободный выпуск рафината, который вместе с некоторым дополнительным количеством рафината из отстойника попадает в выпарной аппарат для рафината /2. Другой метод работы состоит в том, что рафинат из отстойника снова подвергают в колонне экстрагированию. Выпарной аппарат для рафината работает при тех же условиях что и выпарной аппарат для экстракта. Двуокись серы, отогнанная в обоих выпарных аппаратах, компримируется компрессором 4 до давления 2—3 ат и затем конденсируется в холодильнике 5. Жидкая двуокись серы поступает снова в мерник 6, на чем ее круговорот заканчивается. Потери двуокиси серы, обусловленные неполнотой обезгаживания выходящих рафината и экстракта, покрываются поступлениями из запасного бака 13. По всей иоло нне для экстр агкровтмя температурный перепад (составлл ет от +10° ДО —10°. Этот перепад создается независимыми друг от друга витками трубок (иа схеме не показано), идущими вокруг колонны, по которым циркулируют различные количества охлаждающего рассола с температурой —20°. В отстойнике и в холодильнике точно так же поддерживается температура —20°. Получаемый таким образом сульфохлорид является примерно 95%-ным. Это значит, что он содержит еще 5% углеводорода. Выход при экстрагировани и составляет примерно 75% от введенного чистого сульфохлорида. Рафинат снова сульфохлорируется и поступает затем снова на экстрагирование. [c.407]

    Однократная перегонка осуществляется испарением или дросселированием жидкой смеси. На рис. 1-21 показаны варианты схемы процесса однократной перегонки. При однократном испарении (рис. 1-21, а) исходную жидкую смесь непрерывно подают в подогреватель 1, где она нагревается до заданной температуры, соответствующей определенной доле отгона смеси при фиксированных значениях давления и температуры, затем парожидкостная смесь поступает в адиабатический селаратор 2, где паровая фаза отделяется от жидкой. Пары конденсируются и охлаждаются в конденсаторе 5 и в виде дистиллята поступают в емкость 4. Дистиллят из емкости и остаток из сепаратора после охлаждения непрерывно отводятся с установки. [c.54]

    Дросселирование исходной жидкости приводит к частпчному-ее испарению из-за резкого понижения давления в дросселе (рис. 1-21,6). Тепло для испарения отнимается от самого потока, поэто-му температура паров дистиллята и жидкого остатка понижается по сравнению с исходной температурой сырья. [c.55]

    Исходный газ под давлением 3 МПа проходит холодильник, где охлаждается дросселированным потоком выходящего газа, содержащего водород и метан. Охлажденный газ проходит сепаратор, конденсат из которого подается в среднюю часть колонны, а пары после охлаждения внешним хладоагентом в верхнюю часть колонны, Между двумя верхними тарелками вводятся острое орошение, промежуточное циркуляционное орошение и холодная фракция Сз. Головной погон из колонны охлаждают этиленом, имеющим температуру минус 106 С, и разделяют в сепа раторе. Верхний продукт сепаратора выводится из сепаратора как отходящий газ, содержащий водород и метан нижний продукт колонны, со-держащ ий этилен, разделяют на фракции Сг и Сз в сепараторе. [c.300]

    При переработке низкоконцентрированных водородсодержащих газов и особенно при небольщом их давлении холода дросселирования метановой фракции может оказаться недостаточно. В этом случае ггредусматривается рециркуляция метановой фракции с подачей ее циркуляционными компрессорами в линию исходного газа. Продуктом криогенной секции является водород 95%-ный (об.) под [c.310]

    Стабильный продукт из колонны направляется на охлаждение в теплообменниках и воздушном холодильнике, фильтрование от механических примесей, после чего выводится с установки. Из верхнее части стабилизационной колонны пары бензина и углеводородныв газ поступают на охлаждение в воздушный конденсатор-холодильник, а затем в сепаратор. После сепаратора бензин содержит значительное количество растворенного сероводорода, который отдувают очищенным углеводородным газом. Насыщенный сероводородом газ направляется после дросселирования на очистку совместно с газами из стабилизационной колонны. Очрщенный углеводородный газ. направляется к печам установки, избыток газа сбрасывается в факельную линию. [c.56]

    На основании значений эффектов дросселирования, найденных по кривым восстановления температуры и определенных по диаграммам состояния теплосодержания движущегося потока (константы энтальпии и энтропии) и его теплоемкости, предприняты попытки с помощью предлагаемого в работе [10] метода выявить теплопроводности и температуропроводность коллекторой, слагающих продуктивную толщу пластов на площади Песчаный-море и некоторых горизонтов Сабунчино-Ра-манинского нефтяного месторождения, и особенно величину температуропроводности, которая является анало- [c.10]

    Все это дает возможность подробнее изучить термодинамические процессы, происходящие в пористой среде коллектора, когда по нему проходит флюид при различных соотношениях составляющих его углеводородов, и ставить вопросы об искусственном регулировании в широких диапазонах эффектов дросселирования жидкости и газа в пласте. Тогда будет можно, с одной стороны, в значительной степени улучшить фильтрационные свойства коллекторов и насыщающих их компонентов жидкости, а значит увеличить и нефтеотдачу пластов и, с другой стороны, благодаря нагреванию движущегося потока провести перенос точек петрации (затвердения) и отложения парафина из глубоких частей лифтовых труб колонны до системы наземных трубопроводов, предотвращая тем самым процесс отложения парафина внутри скважины. [c.11]

    Парокомпрессионные холодильные машины (ПХМ) могут работать с влажным ходом или сухим ходом компрессора. В первом случае компрессор всасывает влажный пар хладагента и сжимает его по адиабате (изоэнтропе) /—2 до состояния насыщения, далее следует конденсация пара по изотерме 2—3, латем переохлаждение жидкости 3 —3, дросселирование по изо-энтальпе 3—4 и испарение по изотерме 4—1 (см. рис. 42, б). [c.126]

    Во втором случае (см. рис. 42, в) компрессор всасывает сухой пар и сжимает его по адиабате 1—2 до рабочего давления. Далее следует охлаждение перегретых паров хладагента до состояния насыщения по изобаре 2—2, конденсация по изотерме 2—3, переохлаждение 3 —3, дросселирование по изоэнталь-пе 3—4 и испарение по изотерме 4—/. [c.126]

    Рассмотрим цикл, основаит,1Й па сочетании дросселирования и расширения газа в детандере (рис. 45). [c.134]


Смотреть страницы где упоминается термин Дросселирование: [c.32]    [c.32]    [c.55]    [c.300]    [c.310]    [c.92]    [c.370]    [c.134]    [c.134]   
Смотреть главы в:

Химическая термодинамика -> Дросселирование

Дымососы грузоочистных соединений -> Дросселирование

Химическая термодинамика Издание 2 -> Дросселирование


Энергетические основы трансформации тепла и процессов охлаждения (1981) -- [ c.179 ]

Гидравлические машины. Турбины и насосы (1978) -- [ c.253 ]

Насосы и вентиляторы (1990) -- [ c.199 , c.201 ]

Общая химическая технология органических веществ (1966) -- [ c.157 ]

Основные процессы переработки полимеров Теория и методы расчёта (1972) -- [ c.267 ]

Экспериментальные методы в неорганической химии (1965) -- [ c.421 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.645 , c.669 ]

Общая химическая технология органических веществ (1955) -- [ c.136 ]

Общая химическая технология неорганических веществ 1964 (1964) -- [ c.204 , c.571 , c.574 ]

Общая химическая технология неорганических веществ 1965 (1965) -- [ c.204 , c.571 , c.574 ]

Курс технологии связанного азота (1969) -- [ c.0 ]

Основные процессы и аппараты химической технологии Часть 2 Издание 2 (1938) -- [ c.657 ]

Устройство, монтаж и ремонт холодильных установок Издание 4 (1985) -- [ c.3 , c.4 , c.18 ]

Устройство, монтаж и ремонт холодильных установок Издание 4 (1986) -- [ c.3 , c.4 , c.18 ]

Процессы и аппараты кислородного и криогенного производства (1985) -- [ c.8 ]

Насосы и компрессоры (1974) -- [ c.58 , c.250 , c.254 , c.263 , c.270 , c.273 ]

Насосы и вентиляторы (1990) -- [ c.199 , c.201 ]

Процессы и аппараты химической промышленности (1989) -- [ c.277 ]

Курс технологии минеральных веществ Издание 2 (1950) -- [ c.171 ]

Получение кислорода Издание 4 (1965) -- [ c.49 ]

Технология нефтехимического синтеза Часть 1 (1973) -- [ c.46 ]

Кислород и его получение (1951) -- [ c.25 , c.26 ]

получение кислорода Издание 4 (1965) -- [ c.49 ]

Химическая термодинамика Издание 2 (1953) -- [ c.149 ]

Общая технология синтетических каучуков Издание 3 (1955) -- [ c.34 ]

Насосы и насосные станции Издание 3 (1990) -- [ c.3 , c.10 , c.106 ]

Основы общей химической технологии (1963) -- [ c.94 , c.95 ]

Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.523 , c.524 , c.526 , c.530 , c.690 , c.691 ]

Оборудование производств Издание 2 (1974) -- [ c.260 ]

Насосы и компрессоры (1974) -- [ c.58 , c.250 , c.254 , c.263 , c.270 , c.273 ]

Холодильная техника Кн. 1 (1960) -- [ c.17 ]

Общая химическая технология Том 1 (1953) -- [ c.292 ]

Разделение воздуха методом глубокого охлаждения Том 1 (1964) -- [ c.16 , c.17 ]

Разделение воздуха методом глубокого охлаждения Том 1 Издание 2 (1973) -- [ c.16 , c.17 ]

Процессы и аппараты химической технологии Издание 5 (0) -- [ c.523 , c.524 , c.526 , c.530 , c.690 , c.691 ]

Справочник по физико-техническим основам криогенетики Издание 3 (1985) -- [ c.42 ]

Кислород и его получение (1951) -- [ c.25 , c.26 ]

Справочник по физико-техническим основам глубокого охлаждения (1963) -- [ c.39 ]




ПОИСК







© 2025 chem21.info Реклама на сайте