Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть я нефтяные остатки

    Тяжелая, высокомолекулярная часть, составляющая 25—30% от поступившей в переработку сырой нефти и получившая название нефтяной остаток, или гудрон, является основным резервом для эффективно-. го решения проблемы углубления ее переработки. В настоящее время значительная доля этих остатков составляет основу для производства котельных топлив, сжигаемых в топках тепловых электростанций, котельных и бойлерных установках. [c.3]


    ШИЙ прогресс в получении ванадия из нефтей достигнут в тех технологиях, где он извлекается после максимального удаления углеводородов. Концентрация ванадия при этом, естественно, последовательно повышается по направлению использования нефть < высококипящий нефтяной остаток < кокс. [c.88]

    Большинство заводов США перерабатывает дешевую высокосернистую нефть в высококачественные бензины, дистилляты и смазочные масла. На первой стадии идет обезвоживание и обессоливание нефти, ее ректификация, т. е. разделение на фракции-бензиновую, светлые дистилляты, вакуумный газойль и гудрон (нефтяной остаток с началом кипения выше 538 "С). Прямогонные бензиновые фракции поступают на риформинг, где происходит превращение парафиновых и циклических насыщенных углеводородов в ароматические, и эта фракция в дальнейшем идет на смешение с другими бензиновыми фракциями для получения высокооктановых регулярных и премиальных бензинов. Светлые дистилляты проходят стадию ректификации, где разделяются на керосиновые и дизельные фракции, затем поступают на установки гидроочистки для удаления сернистых и азотных соединений, после чего дистилляты готовы к использованию. [c.102]

    Глубина переработки нефти (ГПН) - показатель, характеризующий эффективность использования сырья. По величине ГПН можно косвенно судить о насыщенности НПЗ вторичными процессами и структуре выпуска нефтепродуктов. Разумеется, что НПЗ с высокой долей вторичных процессов располагает большей возможностью для производства из каждой тонны сырья большего количества более ценных, чем нефтяной остаток, нефтепродуктов и, следовательно, для более углубленной переработки нефти. [c.615]

    Понятие глубины переработки нефти, выраженное в виде вышеприведенного уравнения, несколько условно, так как выход непревращенного остатка, в том числе котельного топлива, зависит не только от технологии нефтепереработки, но и, с одной стороны, от качества нефти, и с другой - как будет использоваться нефтяной остаток как котельное топливо или как сырье для производства битума, как нефтяной пек, судовое или газотурбинное топлива и т.д. Так, даже при неглубокой переработке путем только атмосферной перегонки легкой марковской нефти, содержащей 95,7 % суммы светлых, ГПН составит более 90 %, в то время как при углубленной переработке до гудрона арланской нефти с содержанием суммы светлых 43 % этот показатель составит менее 70 %. [c.615]


    Из рассмотрения технологической структуры НПЗ различных типов (табл. 11.4) следует, что для глубокой и безостаточной переработки нефти требуется более высокая степень насыщенности вторичными процессами как углубления нефтепереработки, так и облагораживания нефтяных фракций. Разумеется, что по мере увеличения ГПН будут возрастать удельные капитальные и эксплуатационные затраты. Однако завышенные затраты на глубокую или безостаточную переработку нефтяного сырья должны окупиться за счет выпуска дополнительного количества более ценных, чем нефтяной остаток нефтепродуктов, прежде всего моторных топлив. [c.632]

    Сырьем для производства нефтяных битумов служат остатки (гудроны), получаемые при выделении из нефти светлых нефтепродуктов методом ректификации. Первичная переработка нефти осуществляется на атмосферных или комбинированных атмосферно-вакуумных трубчатых установках (АВТ). В результате первичной переработки нефти получают нефтяной остаток — мазут, который выводится из последней колонны. [c.754]

    Нефть Битум Нефтяной остаток [c.440]

    Нефтяные битумы (асфальты). Нефтяные битумы — блестящие черного цвета продукты, обычно твердые при комнатной температуре. Сырьем для производства нефтяных битумов служит главным образом остаток от перегонки мазута — гудрон. Наилучшим сырьем для производства битумов является гудрон тяжелых смолистых нефтей. Нефтяные битумы применяют для дорожного строительства, лаковой, электротехнической, кровельной и других видов промышленности. [c.151]

    Пропановая деасфальтизация — одна из основных стадий производства высоковязких остаточных масел — осуществляется при 70—80 °С, давлении 35 атм. с кратностью растворителя к сырью 8 1. Выход деасфальтизата при пропановой деасфальтизации составляет от 20 до 35%, (коксовое число 0,9—1,27о), при бутановой — 45—60 /о (коксовое число 5—7%). В обоих случаях образуется до 65—80% (на гудрон) или 30—40% (на нефть) асфальта, который переработать в котельное топливо намного труднее, чем исходный нефтяной остаток. Деасфальти-зат оказывается в 8—9 раз дороже гудрона. Еще одним существенным недостатком пропановой деасфальтизации является то, что даже после двух ступеней в асфальте остается значительное количество ценных масляных компонентов гудрона [35,54]. [c.16]

    Наиболее изучена в лабораторных [12] ив полупромышленных [11, 13] условиях деасфальтизация растворителями, при которой смолисто-асфальтеновые вещества химически не изменяются, а растворитель используется многократно. Эти процессы давно применяются в производстве смазочных масел для получения деасфальтизата с коксовым числом 0,9—1,2%, где в качестве растворителя используют пропан. Однако метод имеет недостатки в асфальт увлекаются не только асфальтены и смолы, но и значительная часть ароматических углеводородов. Аналогичная картина наблюдается при нропан-бутановой и бутановой деасфальтизации. Метод неприемлем для многотоннажного производства топлив из нефтяных остатков из-за большого количества (65—80% на гудрон и 30—40% на нефть) асфальта, который не нашел рентабельного применения. Переработать его в котельное топливо намного труднее, чем исходный нефтяной остаток. Деасфальтизат получается в 8—9 раз дороже гуд- [c.6]

    В заключение обзора азотистых оснований, выделенных из нефтяных дестиллатов, необходимо отметить здесь то же, на что было обращено-внимание в предыдущей главе в отношении сернистых соединенш . Не подлежит сомнению, что в сырой нефти содержатся далеко не все азотистые основания, которые могут быть обнаружены в ее дестиллатах, и что многие из них образуются лишь при перегонке нефти. Так, если обработать сырую нефть или остаток от ее перегонки минеральной кислотой, то, казалось бы, органические основания должны быть извлечены при этом полностью. Опыт показывает, однако, что при последующей перегонке в. дестиллате вновь обнаруживаются азотистые основания, которые, таким образом, могут быть лишь вторичного происхождения. [c.255]

    Характер последней фракции нефти зависит от того, из какого месторождения она взята. Иногда остаток после перегонки состоит почти исключительно из углерода — это нефтяной кокс. В других случаях остается вязкое вещество, состоящее из углеводородов с очень большими молекулами (а также некоторых других соединений). Это нефтяной асфальт. [c.30]

    В прошлом нефть служила в основном для получения керосина, смазочных масел и котельного или печного (отопительного) топлива. С распространением двигателей внутреннего сгорания и с постоянно возрастающим спросом на бензин перед нефтяной промышленностью была поставлена задача получать из нефти больше бензина, чем его в ней первоначально содержится. Эта задача была решена при помощи крекинг-процесса. Процессы расщепления под влиянием тепла (термический крекинг) или тепла и катализатора (каталитический крекинг) позволяют получить из нефти не только больше бензина, чем было первоначально в нефти, но и бензин лучшего качества. Крекингу подвергают чаще всего высококипящие фракции, представляющие собой остаток после отгона от нефти при нормальном давлении бензина прямой перегонки, керосина и в отдельных случаях дизельного топлива. [c.17]


    Нефтяной кокс получают при коксовании нефтяного сырья в коксовых кубах, необогреваемых камерах и в аппаратах с движущимся теплоносителем. Исходным сырьем для коксования являются обычно нефтяные остатки гудрон, мазут, крекинг-остаток. В меньшем количестве используются тяжелые ароматизированные дистилляты пиролиза, каталитического крекинга. В зависимости от технологии получения нефтяной кокс содержит от 90 до 95% углерода, 2—5% водорода, 2—3% кислорода и азота. Важнейшими показателями качества кокса являются содержание серы и зольность, которые зависят от состава перерабатываемой нефти (остатка). Содержание серы коксе различных марок должно быть не более 0,6—1,5 вес. %, а зольность — не более 0,3—0,6 вес. %. Большое значение имеет также структура кокса. [c.145]

    Более удобно в качестве испаряющего агента использовать легкие нефтяные фракции, так как это исключает применение открытого водяного пара при перегонке сернистого сырья, вакуума и вакуумсоздающей аппаратуры. Так, применение испаряющего агента позволило выделить из 38%-ного остатка сернистой нефти под атмосферным давлением ценные масляные дистилляты в количестве 60% на остаток. Испаряющим агентом служила фракция бензина 54— 160° С в весовом соотношении 1 1 к исходному сырью. Перегонку вели при 345° С. [c.204]

    Нефть представляет собой сложную смесь многочисленных соединений, преимущественно (80—90% и более) углеводородов разных классов. При нагревании из нее выделяются пары углеводородов, вначале более легких, а затем по мере нагревания — более тяжелых. На способности нефтяных углеводородов испаряться при разных температурах основана промышленная перегонка нефти. Путем перегонки нефти при атмосферном давлении получают светлые фракции (бензин, лигроин, керосин, газойль) и остаток — мазут (45—55%). Вакуумная перегонка мазута дает газойль, соляровое масло, машинные масла и остаток — гудрон. [c.9]

    Наличие порфириновых комплексов в нефтях считается практически доказанным [95—97]. Найдены их специфические окислительно-восстановительные свойства и фотохимическая активность, связанная с электронными переходами в сопряженной системе [97]. Порфнриновые комплексы являются достаточно стойкими соединениями и во время перегонки переходят в нефтяной остаток не разрушаясь [62]. В исследованиях Ена и Эрдмана [21, 98] и в более поздней работе [99] показано, что в структурной упаковке асфальтенов имеются возможности для координации ионов ванадия и никеля с гетероциклическими структурами, включенными в общую полнциклическую систему, с образованием соединений типа ванадилпорфирина и ванадилфта-лоцианина, для которых методом ЭПР найдены -факторы, равные 1,965 и 1,987 соответственно. [c.84]

    В качестве базовых компонеетов смазки Ниогрин-С были использованы продукты как нефтепереработки, так и нефтехимии печное топливо, абсорбент, представляющие собой отходы нефтехимических производств, летнее дизельное топливо, легкий газойль каталитического крекинга, высокоароматизкрован-ные дистилляты. Анализ физико-химических свойств базовых компонентов профилактической смазки Ниогрин-С показал, что отходы нефтехимического производства отличаются от среднедистиллятных фракций нефтепереработки по своей природе и физико-химическим свойствам. Это создает определенные трудности при получении товарного продукта. Однако к несомненному преимуществу нефтехимического сырья следует отнести его хорошие низкотемпе-ратурнью свойства, что обусловлено особенностями углеводородного состава печного топлива и абсорбента по сравнению с дизельным топливом, полученным прямой перегонкой нефти. В качестве присадки к профилактической смазке использован тяжелый нефтяной остаток — мазут, гудрон или крекинг-остаток, в состав которых входят естественные поверхностно-активные вещества. На основании проведенных исследований разработаны оптимальные компонентные составы профилактической смазки Ниогрин-С, технология производства и технологическая схема ее компаундирования. [c.306]

    В средних и высококипящих фракциях нефтей обнаружены циклические кетоны типа флуоренона (XXXIX), сложные эфиры (А Ок, где А — остаток нефтяных кислот) и высокомолекулярные простые эфиры (Я ОР) как алифатической, так и циклической структур, например, типа бензофуранов (ХЬ), обнаружены в высо — кокипящих фракциях и остатках. [c.74]

    Нефть представляет собой многокомпонентное сырье с непрерывным характером распределения фракционно1 о состава и соответственно летучести компонентов. Расчеты показывают, что значение коэффициента относительной летучести непрерывно (экспоненциально) убывает по мере утяжеления фракций нефти, а также по мере сужения температурного интервала кипения фракций. Эта особенность нефтяного сырья обусловливает определенные ограничения как на четкость погоноразделения, особенно относительно высококипящих фракций, гак и по отношению к "узости" фракций. С экономической точки зрения, нецелесообразно требовать от процессов перегонки выделить, например, индивидуальный чистый углеводород или сверхузкие фракции нефти. Поэтому в нефтепереработке довольствуются получением следующих топливных и газойлевых фракций, выкипающих в достаточно широком интервале температур бензиновые н.к.— 140 С (180 °С) керосиновые 140 (180)—240 °С дизельные 240 — 350 °С вакуумный дистиллят (вакуумный газойль) 350—400 °С, 400—450 °С и 450—500 °С тяжелый остаток — гудрон >490 °С (>500 °С). Иногда ограничиваются неглубокой атмосферной перегонкой нефти с получением в остатке мазута >350 °С, используемого в качестве котельного топлива. [c.166]

    Понятие глубины переработки нефти, выраженное в виде вышеприведенного уравнения, несколько условно, так как выход непревращенного остатка, в том числе котельного топлива, зависит не только ог гохгюлогии нефтепереработки, но и, с одной стороны, от качества нефти и, с другой, — от того, как будет использоваться не. зтяной остаток как котельное топливо или как сырье для про — изиодства битума, как нефтяной пек, судовое или газотурбинное то][лива и т.д. Так, даже при неглубокой переработке путем только атмосферной перегонки легкой Марковской нефти, содержащей [c.249]

    За рубежом тепло пародистиллятных фракций широко используется для предварительного подогрева нефтяного сырья. Так, на атмосферно-вакуумной установке фирмы Креол (Ве,несуэлла) производительностью 3 млн. т/год нефти в результате глубокой регенерации тепла всех видов горячих потоков (в том числе и пародистиллятных фракций) температура предварительного подогрева нефти достигает 260 °С. Нефть пропускается через теплообменные аппараты, обогреваемые теплоносителями в следующем порядке циркуляционные орошения атмосферной колонны— -пародистиллятные фракции атмосферной колонны— -верхние продукты вакуумной колонны— -боковые потоки атмосферной колонны— -боковые потоки вакуумной колонны— -вакуум-остаток. На обычных установках нефть поступает в атмосферную печь при 170—180 °С. Таким образом, благодаря регенерации тепла горячих потоков тепловая нагрузка печей уменьшается на 20—25%. [c.213]

    По гипотезе Э. Биннэя, процесс нефтеобразования должен происходить во всех торфяных болотах, однако сколько-нибудь значительных количеств нефти в торфяниках не найдено. Если здесь совершается процесс сухой перегонки, то должен быть налицо коксовидный угольный остаток. Такого угольного остатка ни в одном из известных нам нефтяных месторождений не найдено. Согласно Г. Потонье, наземные и болотистые растения, в том числе [c.319]

    При нагревании такой сложной смеси, как нефть, в паровую фазу прежде всего переходят низкокипящие компоненты, обладающие высокой летучестью. Частично с ними уходят высококипящие компоненты, однако концентрация низкокипящего компонента в парах всегда больше, чем в кипящей жидкости. По мере отгона пизко-кипящих компонентов остаток обогащается высококипящими. Поскольку давление насыщенных паров высококипящих компонентов при данной температуре ниже внешнего давления, кипение в конечном счете может прекратиться. Чтобы сделать кипение безостановочным, жидкий остаток непрерывно подогревают. При этом в паровое пространство переходят все новые и новые компоненты со все возрастающими температурами кипения. Отходящие пары 1<онденси-руются, конденсат отбирают по интервалам температур кипения компонентов в виде отдельных нефтяных фракций. [c.112]

    Внешние его свойства всецело зависят от того, при каких условиях производилась отгонка тяжелой <люлы. Пек очень легко пережечь, т. е. превратить его в массу с зернистым и матовым изломом, содержащую кусочки настоящего нефтяного кокса. Во всяком случае смоляной пек занимает среднее положение между каменноуголь- ным пеком и натуральным продуктом перегонки нефти в вакууме. От первого он отличается значительным содержанием неароматических углеводородов, от второго плохой растворимостью в бензине. Исследование пеков производится но обшдм правилам, причем прежде всего определяется содержание кокса и иных видов углерода. Для этого пек экстрагируется кипящим бензолом, а нерастворимый остаток взвешивается (405). Применение других растворителей, вроде хлороформа или сероуглерода, менее удобно в виду плохой растворимости в них иолициклических ароматических углеводородов, см. (289). [c.427]

    Нефть месторождения Нефтяные камни (юго-западнзе крыло) Остаток j [c.106]


Смотреть страницы где упоминается термин Нефть я нефтяные остатки: [c.72]    [c.321]    [c.85]    [c.91]    [c.13]    [c.80]    [c.3]    [c.26]    [c.68]    [c.594]    [c.509]    [c.507]    [c.507]    [c.46]    [c.142]    [c.84]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Нефть Нефтяной газ



© 2025 chem21.info Реклама на сайте