Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликопротеины антигенные свойства

    Методы, основанные на иммуно-химичеоких свойствах веществ, в последнее время широко используются при работе со многими гликопротеинами, например с веществами групп крови, которые проявляют сильные антигенные свойства. Разработаны методы количественного определения их преципитатов с сыворотками. [c.75]

    Антиген — это молекула, вызывающая образование антител. Все клетки несут на своей поверхности антигены, которые выступают в роли меток (маркеров), позволяющих клеткам распознавать друг друга. Обычно антигены представлены белками или гликопротеинами, т. е. белково-углеводными соединениями, хотя в принципе антигенными свойствами может обладать любая крупная молекула. Организм отличает свои антигены от чужих и в норме образует антитела только против чужих. [c.175]


    В группу иммуноглобулинов входят гликопротеины, у которых функция углеводов, входящих в молекулу, в настоящее время неизвестна. Среди всех гликонротеинов сыворотки только группа иммуноглобулинов обладает свойствами антител, однако продукты, полученные после обработки папаином и не содержащие углеводного компонента, сохраняют специфическое сродство к соответствующему антигену, и, следовательно, углеводная часть не принимает участия во взаимодействии антигена с антителом [1, 2]. Следует учитывать, что антитела обладают рядом других биологических свойств, таких, как способность фиксироваться на коже, передаваться от матери к плоду и после реакции с антигеном связывать комплемент. Возможно, что углеводная часть играет важную роль в проявлении одного или нескольких из этих свойств. Возможно также, что углеводный компонент определяет антигенную специфичность иммуноглобулинов. [c.100]

    В группу иммуноглобулинов входят три типа соединений, из которых наиболее изучен тип 78 у-глобулинов. Общим свойством гликопротеинов, входящих в группу иммуноглобулинов, является их способность функционировать как антитела. Антисыворотка к одному из них дает перекрестную реакцию с двумя другими, т. е. некоторые антигенные участки у них одинаковы. В табл. 1 перечислены указанные группы гликонротеинов и их наиме- [c.100]

    Иммунологические опыты показывают, что препараты аскислого гликопротеипа, полученные из человеческой плазмы по методам Веймера и сотр. ]20], Шмида [18, 19] и Шультце и сотр. [34], иммунологически идентичны [68]. Так же была обнаружена идентичность препаратов а -кислого гликопротеипа из плазмы и из мочи [23]. Антигенные свойства, по-видимому, не связаны с углеводной частью молекулы гликопротеина, так как при окислении перйодатом (см. раздел 6, б, 3) разрушаются остатки галактозы и сиаловой кислоты, но не удаляется антигенный участок [52]. Антигенные и видоспецифические свойства не изменяются при денатурации нагреванием. [c.76]

    Атропинэстераза сыворотки кролика — неснецифический В-тип эсте-разы, является гликопротеином, содержащим сиаловую кислоту. Обработка нейраминидазой приводит к уменьшению общего отрицательного заряда молекулы белка фермента, что было показано с помощью электрофореза на крахмальном геле при pH 4,5. После отщепления сиаловой кислоты каталитические и антигенные свойства молекулы фермента в основном сохранялись [83]. [c.246]

    Иногда инактивированные вакцины вместо того чтобы предотвращать заболевание, усиливают его [50, 73]. Впервые это было отмечено для инактивированной формалином вакцины против вируса кори [50]. Первоначально эта вакцина предотвращала корь, но через несколько лет вакцинированные теряли устойчивость к этому заболеванию. При заражении вирусом кори у вакцинированных развивалась атипичная картина заболевания с выраженными системными симптомами и пневмонией [50, 125, 154]. Ретроспективный анализ показал, что формалин, использованный для инактивации, разрушал антигенные свойства коревого белка Р, но не изменял белка Н (гемагглютинирующий белок, обеспечивающий прикрепление к клеткам) [131, 132]. Таким образом, у вакцинированных возникала несбалансированная иммунная реакция, при которой развивался иммунный ответ на белок Н, но не на белок Р. Позднее было показано, что вакцинированные отвечали на парентеральное введение живого аттенуированного вакцинного вируса развитием в месте его введения реакции Артюса [17]. Это позволило предположить, что у вакцинированных в ответ на заражение диким типом вируса кори развивался ускоренный иммунный ответ на белок Н, что создавало условия для реакции Н-антиген — антитело с присущими ей иммунопатологическими последствиями. Формалин по-разному действовал также на поверхностные гликопротеины вирусов паротита и парагриппа антиген Р разрушался, в то время как антигенные свойства гемагглютинина — нейраминидазы (НЫ) сохранялись [133, 140]. [c.158]


    Для выяснения полного строения гликопротеина нужно решить три основные задачи 1) установить сбщий тип построения гликопротеина (архитектонику гликопротеина) 2) установить природу связи между пептидными и полисахаридными цепями 3) установить мономерную последовательность в пептидных и полисахаридных цепях. Решение каждой из этих проблем требует особых подходов, хотя, естественно, эти проблемы неотделимы и часто решаются одновременно. Для изучения связи биологической функции гликопротеина с его строением особенно важно выяснение структуры тех фрагментов биополимера, которые ответственны за его специфичность. Эти группировки являются чаще всего олигосахаридными цепями. Для гликопротеинов, обладающих иммунологическими свойствами, они носят обычно название иммунологических или антигенных детерминантов. [c.568]

    Сиаловые кислоты играют важную роль, поскольку они терминируют олигосахаридные цепн смешанных биополимеров. Находясь на невосстанавливающем конце олигосахаридных цепей гликолипидов и гликопротеинов, сиаловые кислоты маскируют антигенные детерминанты биополимера и придают ему отрицательный заряд. Наличие сиаловых кислот иа концах олигосахаридных цепей животных гликопротеинов обеспечивает возможность циркуляции последних в кровотоке, предотвращая захват их клетками печени. Входя в состав биополимеров животных клеток, сиаловые кислоты во многом определяют свойства клеточной поверхности. Изменение содержания сиаловых кислот на клеточной поверхности сопровождает такие процессы, как дифференцировка клеток и зло- [c.493]

    Специфические сорбенты, использующие исключительные свойства биологически активных веществ образовывать специфические и обратимые комплексы, в огромной степени облегчают выделение ряда ферментов, их ингибиторов и кофакторов, антител и антигенов, лектинов, гликопротеинов, гликополисахаридов, нуклеиновых кислот, нуклеотидов, жиров, транспортных и рецепторных белков, гормонов и их рецепторов, клеток и многих других соединений, как это представлено в обзорной табл. 11.1. Наряду с названием выделяемого вещества в таблице приведены также используемые аффинные лиганды, нерастворимые носители и пространственные группы, причем указано, аффинный лиганд или нерастворимая матрица модифицированы данной пространственной группой. Обзорная таблица включает выделения веществ как с помощью типичной биоаффинной хроматографии, так и с помощью гидрофобной или ковалентной хроматографии. [c.367]

    Поскольку н Т-, н В-лимфоциты встречаются во всех периферических лимфоидных тканях, нужно было найти удобные методы, которые позволяли бы различать н разделять эти два типа клеток,-только после этого можно было изучать их индивидуальные свойства. К счастью, различительными маркерами могут служить многочисленные белки плазматической мембраны, характерные только для Т- нли только для В-клеток. Один нз наиболее часто используемых шркеров-гликопротеин Thy-], который у мышей имеется на Т-, но не на В-лимфоцитах поэтому антитела к Thy-1 можно использовать для удаления нли очистки Т-клеток из смешанной популящ1н лимфоцитов мыши. Использование антигенных маркеров клеточной поверхности для различения и разделения Т- и В-клеток революционизировало клеточную иммунологию и сыграло важную роль в быстром прогрессе этой области знания в последние годы. У экспериментальных животных и у человека находят все больше и больше новых маркеров, характерных для функционально различных субпопуляций Т- и В-лимфоцитов. [c.11]

    В методе иммунодиффузии наблюдается полоса преципитадии при диффузии препарата в гель, содержащий антитела. Каждая система антиген—антитело образует свою полосу. Диффузия может быть проведена в тонкой пленке геля или в вертикальных трубках. При помощи иммунофореза можно разделить очень сложную смесь близких по физико-химическим свойствам гликопротеинов. Первоначально проводится электрофорез в агар-агаровом геле, а затем иммунодиффузия ( перпендикулярном направлении). [c.75]

    Узнавание Т-лимфоцитами антигена, ассоциированного с гликопротеинами МНС на поверхности клетки-мишени, осуществляется Т-клеточным антигенным рецептором (T R) и одним из трансмембранных белков, D4 или D8, являющихся корецепторами T R. Предполагается, что невалентный комплекс образуется за счет стабилизирующих контактов между вариабельными участками молекулы T R, антигеном и полиморфными участками МНС, а таьсже между мембранным белком D4 (или DS) и неполиморфными областями МНС класса II (или класса I соответственно). Для скоординированных взаимодействий T R и D4 (или D8) с белками МНС клеток-мишеней требуется определенная совокупность свойств Т-клеток, которые появляются во время развития лимфоцитов в тимусе, их дифференциации и созревания. [c.69]

    ЮТ определенные типы клеток или белков и не распознают другие образования и структуры. Моноклональные антитела к, корпускулярным антигенам или гликопротеинам могут проявлять неожиданные серологические свойства, а именно окрашивать различные клетки или же связывать большое число разнообразных гликопротеинов. Такие антитела, как правило, распознают специфические углеводные структуры, которые могут входить в состав самых разнообразных белков. Примером служит углеводная структура З-фукозил-М-ацетиллактозамина,. которая может быть обнаружена в кислом гликопротеине а-К лактоферрине, а-амилазе секрета околоушной железы, цервикальном муцине и в секреторном компоненте. Моноклональные антитела различной специфичности могут найти практическое применение во многих областях биологии и медицины. С помощью серологических исследований следует предварительно определить, что определенные моноклональные антитела действительно проявляют специфичность именно в данной тестирующей системе. [c.150]


    Каждый вирус представляет собой сложную смесь антигенов. Степень этой сложности определяется количеством вирус-специфических белков. Как большинство других сложных корпускулярных антигенов, вирусы обычно высоко иммуногенны, и большая часть их белков способна вызывать антительный ответ. Высокая иммуногенность, вероятно, объясняется боль- шим числом антигенных детерминант, доступных для распозна-,вания Т-хелперами. Особым свойством вирусов, важным для их функционирования в качестве антигена, является способность к репликации, благодаря которой удлиняется период воздействия антигена на иммунную систему. Для индукции антительно-го ответа В-клеток большая часть антигенов нуждается в помощи Т-клеток (является Т-зависимой). Вместе с тем некоторые полимерные антигены, состоящие из повторяющихся субъединиц, способны вызывать В-клеточный ответ в отсутствие Т-клеток (они Т-независимы). Как и предполагали, большинство изученных вирусов оказалось Т-зависимыми антигенами. Можно также ожидать, что некоторые вирусные белки более активны в качестве антигенов, чем другие. Это, в частности, относится к вирусным гликопротеинам, экспрессированным на поверхности зараженных клеток и на поверхности вирусных частиц. Эти специфические вирусные гликопротеины — наиболее явные и доступные мишени для иммунного ответа. [c.9]

    Существует три класса человеческих интерферонов а-ИФН и -ИФН, образующиеся преимущественно в лейкоцитах и фибробластах, соответственно, в ответ на вирусную инфекцию или на разнообразные индуцирующие воздействия [92], и у ИФН, называвшийся ранее иммунным интерфероном, или интерфероном класса II, продуцируемый несенсибилизированными лимфоидными клетками в ответ на мутогены и сенсибилизированными лимфоцитами при стимуляции специфическим антигеном [51] (табл. 15.1) -ИФН и Y-ИФН относятся к гликопротеннам, однако олигосахаридные боковые группы не существенны для их биологической активности [75, 90, 128], что объясняет, почему клонированный интерферон, синтезируемый в прокариотах (см. ниже), обладает нормальной биологической активностью. Интерфероны класса а не являются гликопротеинами. а-ИФН и -ИФН, но не Y-ИФН очень устойчивы к низким значениям pH (оба вполне стабильны при pH 2 при 4 С) и сохраняют биологическую активность в присутствии ДСН [227]. Это необычное свойство позволяет применять эффективный способ их очистки на конечных этапах выделения [93]. [c.39]

    Три удивительных свойства молекул МНС в течение многих лет ставили иммунологов в тупик Во-первых, эти молекулы занимают совершенно особое место среди антигенов-мишеней по своему значению при Т-кпеточных трансплантационных реакциях Во-вторых, узнавать чужеродные молекулы МНС может необычно большая доля Т-лимфоцитов если на типичный вирусный антиген отвечает менее 0,001% Т-кпеток организма, то на одиночный чужеродный МНС-антиген реагирует уже более 0,1% Т-кпеток В-третьих, многае из локусов, кодирующих молекулы МНС, более полиморфны, чем какие-либо другие у высших позвоночных Это означает, что в пределах данного вида каждый локус представлен необычно большим числом аллелей (альтернативных форм одного и того же гена)-их может бьпь более 100, и каадый аллель встречается в популяции с относительно высокой частотой По этой причине, а также потому, что каждый индивидуум имеет семь или больше локусов, кодирующих молекулы МНС (см, ниже), очень редко можно встретить два организма, имеющих идентичный набор гликопротеинов МНС Это делает весьма трудным подбор доноров и реципиентов при трансплантации органов людям (за исключением генетически идентичных близнецов) [c.265]


Смотреть страницы где упоминается термин Гликопротеины антигенные свойства: [c.574]    [c.37]    [c.237]    [c.164]    [c.163]    [c.78]    [c.146]    [c.267]   
Химия углеводов (1967) -- [ c.574 , c.603 ]




ПОИСК





Смотрите так же термины и статьи:

Антигенность

Антигены



© 2025 chem21.info Реклама на сайте