Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация полисахаридных цепей

    Рентгеноструктурный анализ применяется для определения кристалличности полисахаридов, элементарной ячейки, установления конформаций моносахаридных звеньев и полисахаридной цепи. Результаты таких исследований освещаются в разделах, посвященных целлюлозе (см. с. 143), галактоманнанам (см. с. 154) и др. [c.94]

    Инфракрасные спектры широко применяются для функционального анализа полисахаридов " , например для определения полноты метилирования (см. стр. 495) или образования других типов производных по гидроксильным группам, для обнаружения сложноэфирных, амидных группировок, сульфатов и т. д. В наиболее простых случаях с помощью инфракрасной спектроскопии можно выяснить конфигурации гликозидных связей в молекуле полисахарида. Метод предложен также для изучения межмолекулярных взаимодействий в полисахаридах например, отношение интенсивностей полос поглощения О—Н и О—В в спектрах образцов целлюлозы, обработанных тяжелой водой для замещения всех доступных атомов водорода гидроксильных групп на дейтерий, может служить мерой кристалличности полисахарида . Наиболее интересные данные о конформациях и ориентации полисахаридных цепей может дать изучение дихроизма в инфракрасных спектрах напряженных пленок полисахарида . Таким способом была подтверждена правильность приведенной выше конформации целлюлозы. Метод применим для исследования сложных природных полисахаридных комплексов с помощью этого метода удалось показать, например, что в растительном материале многие гемицеллюлозы ориентированы вдоль целлюлозных фибрилл - 168  [c.517]


    Несомненно, что и биологические функции, и механические свойства полисахаридов и углеводсодержащих биополимеров в большой мере определяются конформацией макромолекулы и распределением в ней реакционноспособных групп. Все эти факторы зависят, в конечном счете, от первичной структуры полимера. Поэтому понимание факторов, определяющих специфичность биологической функции углеводсодержащих соединений и технические свойства полисахаридов, зависит в первую очередь от развития теоретических представлений о связи между строением, конформацией, реакционной способностью и физико-химическими свойствами полисахаридов и смешанных биополимеров, содержащих олиго- и полисахаридные цепи. Установление этих связей является предпосылкой для осуществления направленного синтеза соответствующих физиологически активных веществ и направленной модификации полисахаридов для получения материалов с заранее заданными свойствами. Поэтому исключительно важной задачей является разработка надежных методов установления первичной структуры полисахаридных цепей, требующих минимальной затраты времени и минимального количества материала. Не менее важны эффективные подходы к точной характеристике конформаций полисахаридной цепи в целом и отдельных ее участков, вплоть до моносахаридных звеньев. Очевидна также необходимость изучения реакционной способности полисахаридной цепи, ее отдельных звеньев и различных функциональных групп, что позволит понять механизм взаимодействия углеводсодержащих биополимеров с их партнерами в биологических системах (например, с антителами при иммунологических реакциях), наметить целесообразный путь модификации природного полимера для придания ему нужных свойств и т. д. [c.625]

    Конформация полисахаридных цепей [c.118]

    Молекулярную основу механической прочности и стенки бактериальной клетки, и стенки растительной клетки, и кутикулы членистоногих составляют неразветвленные полисахариды, молекулы которых имеют конформацию жесткого стержня. Такая конформация характерна для полисахаридных цепей, в которых две связи элементарного звена (моносахаридного остатка) ориентированы в пространстве параллельно. Это возможно для пиранозных звеньев, соединенных 1—>4-связями, если и гликозидный кислород, и кислород при С-4 связаны с циклом экваториально. Одна из наиболее типичных укладок таких звеньев в стержнеобразную макромолекулу, включающая антипараллельную ориентацию соседних остатков, показана ниже  [c.148]

    Чтобы задать конформацию остова полинуклеотида, требуется еще пять торсионных углов [65—70] (рнс. 2-22,Г). Углы со, и 0 определяют расположение групп в молекуле нуклеотида, а ф и г з имеют тот же смысл, что и в полипептидных и полисахаридных цепях. Набор значений, которые могут принимать углы со, и б, крайне ограничен. Еще один торсионный угол о располагается внутри сахарного кольца [c.128]


    Как показывает изучение моделей, чтобы шесть сахарных колец субстрата были прочно связаны ферментом, кольцо, содержащее тот атом углерода, у которого происходит замещение, должно быть выведено из своего нормального состояния, соответствующего конформации кресла , и перейти в форму полукресла , необходимую для реализации механизма с участием карбоний-иона [15, 16]. Таким образом, в результате связывания полисахаридной цепи субстрата на шести различных центрах фермента происходит искажение конформации определенного цикла и возникает новая конформация, подобная конформации переходного состояния. Это, возможно, и является наиболее характерным аспектом ферментативного катализа. [c.99]

    В современных обзорах, посвященных более детальному описанию конформации полисахаридов, приведены расчеты стереохимии полисахаридных цепей в зависимости от типа имеющихся в них химических связей [1], описаны методы предсказания параметров неупорядоченных форм молекул полисахаридов в растворах [2], рассмотрены вторичные и третичные структуры полисахаридов в растворах и гелях [3]. В более ранних обзорных работах рассмотрены основные принципы образования конформаций полисахаридов [4] формам молекул полисахаридов посвящен обзор [5]. [c.282]

    Полисахаридные цепи недостаточно гибки, чтобы, подобно многим полипептидным цепям, складываться в компактные глобулярные структуры. Таким образом, цепи гликозаминогликанов стремятся принять конформацию очень рыхлого случайного клубка и занимают огромный для своей массы объем (рис. 12-58). Будучи гидрофильными, они притягивают большое количество воды и даже в очень низких концентрациях образуют гидратированный гель. Эту тенденцию еще более усиливает высокая плотность отрицательных зарядов, которые притягивают осмотически активные катионы. Такая способность гликозаминогликанов притягивать воду создает во внеклеточном матриксе давление набухания (тургор), противодействующее сжатию (в то время как коллагеновые фибриллы, напротив, противодействуют растягивающим силам). [c.233]

    Важную группу полисахаридов составляют гликозаминогликаны, к которым относятся гиалуроновая кислота, хондроитинсульфаты и кератансульфат. Было показано, что в ориентированных пленках молекулы этих соединений в зависимости от типа присутствующих катионов могут принимать целый ряд взаимо-превращаемых конформаций [12]. Эти конформации представляют собой группу левых спиралей, упакованных антипараллельно и отличающихся в основном степенью растянутости. Наиболее сжатой является одна из конформаций гиалуроновой кислоты, в которой одна молекула закручена вокруг другой с образованием двойной спирали [13] во всех остальных случаях молекулы упакованы бок о бок . В некоторых случаях удалось детально выяснить строение молекул, что для волокнистых веществ, в отличие от кристаллических, очень трудно сделать удалось даже выявить положение молекул воды и геометрию участков молекул, координированных вокруг катионов [14]. Важными вехами на пути понимания конформационных принципов строения полисахаридных цепей стали а) первый пример установления с помощью, рентгеноструктурного анализа упорядоченной конформации разветвленного полисахарида (внеклеточного полисахарида Е. oli) это позволило предположить, что наличие ветвлений играет важную роль при ориентации боковых цепей антипараллельно основной цепи и стабилизации таким образом конформации молекул полисахарида посредством нековалентных взаимодействий [15] б) первое изучение этим же методом структуры кристаллического гликопротеина, которое показало упорядоченность конформации его углеводной части [16]. Ко времени опубликования работы [16] определение строения (F -фрагмента иммуноглобулина G) не было доведено до конца, однако уже можно было сделать ряд важных выводов, которые будут рассмотрены ниже. [c.283]

    Примеры упорядоченных конформаций, которые могут принять две разные полисахаридные цепи, А и В, при образовании геля. Поскольку взаимодействие между молекулами ограничено определенными участками их цепей и не распространяется на всю молекулу, каждая цепь может объединиться более чем с одним партнером и таким путем образовать решетку геля. К гелеобразующим полисахаридам относятся, в частности, агары (из водорослей) и пектины (из высших растений). [c.236]

    Полисахаридные полиэлектролиты в упорядоченных конформациях могут быть растворимыми, поскольку наличие заряда Основной цепи, а также тенденция противоионов смешиваться [c.297]

    Волокнистые полисахариды, например хитин и целлюлоза, имеют очень жесткую вторичную структуру. Стерические препятствия, возникающие при взаимодействии громоздких сахарных групп, сильно ограничивают число допустимых конформаций. Волокна в достаточной степени упорядочены, что позволяет получить детальную рентгеновскую дифракционную картину, но лишь некоторые из рентгенограмм удалось расшифровать и построить однозначные структурные модели. Некоторые полисахаридные волокна составлены из лент, содержащих две цепи, которые стабилизированы водородными связями между остатками. Другой тип вторичной структуры полисахаридов представляют спирали. Например, в клеточных стенках некоторых морских водорослей вместо целлюлозы или хитина содержится ксилан ( 8-1,3-полимер ксилозы). Он образует трехцепочечную спираль, у которой все три цепи параллельны (рис. 4.3, А). На один виток спирали приходится шесть остатков, структура стабилизирована центральным ядром межцепочечных водородных связей между гидроксильными группами сахаров (рис. 4.3, . Таким образом, в общих чертах организация ксилана такая же, как у коллагена. [c.198]


    Полифункциональность моносахаридных единиц обусловливает большой набор возможных типов связи между мономерными остатками, что приводит к разнообразию в предпочтительных конформациях полисахаридной цепи и, следовательно, к различиям в физических свойствах и биологических функциях полисахаридов. Разнообразие типов связи может возникать не только из-за участия разных гидроксильных групп остатков моносахарида в образовании гликозидной связи, но и из-за различной конфигурации гликозидного гидроксила. Так, целлюлоза (Р-1,4-глюкан) и амилоза (а-1,4-глюкан) существенно отличаются по конформации молекул.и физическим свойствам. Для целлюлозы характерна способность образовывать длинные вытянутые нити, а молекула амилозы существует в растворе в виде свернутого клубка и легко дает комплексы, в которых полисахаридная цепь образует спиральную вторичную структуру. Это, несомненно, обусловливает различие в биологических функциях целлюлозы и амилозы. [c.607]

    Изучение пространственных моделей и построение математических моделей позволяют предположить существование таких свойств упорядоченных конформаций углеводных цепей, по которым они отличаются от конформаций других важных биополимеров— белков и нуклеиновых кислот. Во-первых, углеводные цепи значительно жестче и, следовательно, число форм, которые может принимать полисахаридная цепь, более ограничено из-за пространственных запретов. Расчет по методу твердых сфер для цепей, в которых последовательно соединенные остатки разделены двумя связями, показывает, что обычно реализуется лишь 5 % возможных конформаций цепи [18]. Во-вторых, изменение последовательности углеводных остатков в полисахаридной цепи может приводить к гораздо более начительному изменению стереохимии молекулы, чем изменени порядка расположения аминокислотных или нуклеотидных остатков, поскольку в случае полипептидов или полинуклеотидов происходит перестройка лишь боковых цепей при сохранении структуры основной цепи, тогда как в полисахаридах изменение конфигурации или положения гликозидной связи ведет к существенным изменениям именно в основной цепи. В-третьих, углеводные цепи часто имеют разветвленную структуру с различным типом связей в точках ветвления, и взаимодействие [c.285]

    Гомопериодичные последовательности, такие, как полисахаридные цепи из 1,4-связанных остатков 3-0-маннопиранозы (3) или из 1,3-связанных остатков а-О-глюкопиранозы (4), в которых диэдральный угол между агликоном и гликозидной связью близок к 180°, существуют, вероятно, только в упорядоченных конформациях, вытянутых или имеющих вид ленты. [c.286]

    Если в периодичную последовательность вклиниваются чужие остатки, данный вид конформации прерывается. По-вндимому, таким образом в биологических системах осуществляется терминирование ассоциации полисахаридных цепей, которая зависит от переплетения регулярных участков цепи, приводящего к образованию сетчатых структур илн гелей. Некоторые типы кон-формационного упорядочения, которые, как было показано, ответственны за образование сетчатых структур, приведены на рис, 26.4.1. [c.287]

    Многие углеводные цепи можно классифицировать как апе-риоднчные, поскольку они не имеют регулярной структуры (состоят из углеводных остатков разных типов, гликозидные связи в них осуществляются по различным положениям и часто имеют разную конфигурацию даже на коротких участках молекулы). Такие цепи, в которых отсутствует периодичность в ковалентной последовательности, не могут принимать периодичных упорядоченных конформаций, например, не могут образовывать спирали или ленты (см. пункт 1). Такие структуры часто бывают разветвленными. Показано [18], что наличие боковой цепи может сильно Повысить жесткость полисахаридной цепи и наложить дополнительные ограничения на возможные конформации вокруг точки ветвления, особенно когда боковая цепь присоединена по вторичной гидроксигруппе углеводного цикла, смежной с гидроксигруппой, участвующей в образовании основной цепи. В некоторых Случаях ветвление может создавать возможность для складывания цепи таким образом, что боковая цепь располагается по одной [c.287]

    Углеводные цепи апериодичного разветвленного типа являются широко распространенными компонентами гликопротеинов и ряда гликолипидов. Из приведенных выше правил следует, что любые упорядоченные конформации, очевидно, должны быть скорее компактными и глобулярными, чем вытянутыми и периодичными. Это дает возможность объяснить связь между структурой и функцией полисахаридных цепей (например, на поверхности клеток в процессе клеточного узнавания и взаимодействий типа гормон — рецептор). Определение структуры первого кристаллического глнко-протеина и в самом деле указывает на возможное соосное расположение и стабилизацию конформаций углеводных и пептидных цепей. [c.289]

    Время релаксации характеризует скорость дефазирования ядер-ных спинов, которое замедляется в результате теплового движения. Следовательно, при быстром тепловом движении молекул возникают узкие спектральные линии, тогда как медленное тепловое движение приводит к такому ушнрению линий, что их невозможно детектировать с помощью соответствующего спектрального дисплея высокого разрешения. Таким образом можно непосредственно отличить конформацию статистического клубка [в котором (по определению) тепловое движение приводит к быстрому взаимопревращению конформаций локальных сегментов молекул в пределах энергетически возможных состояний] от конформаций, в которых локальные сегменты полисахаридной цепи настолько свя- [c.292]

    Если установлено, что молекулы данного полисахарида в растворе имеют частично или полностью упорядоченную конформацию, то следующим шагом является возможно более детальное определение их геометрии. Все имеющиеся в настоящее время подходы к решению этой проблемы основаны на сравнении с базисными конформациями, определенными рентгеноструктурным анализом в твердом состоянии. Сравнение некоторых основных особенностей конформаций молекул может быть сделано на основании анализа стехиометрии при переходе порядок — беспорядок так, можно выяснить, из скольких тяжей составлена упорядоченная коиформа-Ция молекулы. Так, изучение концентрационной зависимости указанного перехода показало, что ксантан упорядочен внутримолекулярно [19], тогда как 1-каррагинан образует упорядоченный димер [29], что и ожидалось для обоих случаев по аналогии с твердым состоянием. Для полиглюкуроната стехиометрия связывания ионов кальция, как было показано, может соответствовать только двухтяжевой укладке его молекулы [30]. Такая двухтяжевая ассоциация полисахаридных цепей в нескольких независимых областях связывания может приводить к возникновению незавершенной трехмерной сетчатой структуры, т. е. к гелеобразованию введение в Молекулу полисахарида короткоцепных сегментов, имеющих только одну область связывания, может подавить процесс образования сетчатой структуры за счет конкурентного ингибирования ассоциа-Дии цепей. Такое явление может быть использовано для получения Данных, подтверждающих двухтяжевый характер ассоциата, как о было сделано для 1-каррагинана и полигулуроната [31]. [c.295]

    Для получения информации о стереохимических особенностях молекул могут быть также применены хироптические методы. Например, сильное нарушение я->-я -перехода для карбоксилатного хромофора при кооперативном связывании ионов кальция поли-гулуронатом и полигалактуронатом согласуется с существованием такой области связывания, в которой катион расположен в непосредственной близости от орбиталей, не участвующих в связывании (что действительно можно предположить по аналогии с известными конформациями цепей) [32]. Широкое применение имеет эмпирическое соотношение [33] между значением оптического вращения и значениями основных конформационных переменных полисахаридной цепи, а именно диэдральных углов ср и ij) [см. формулы (1) и (2)]. Величину, известную как связевое вращение [Л]о, определяют, вычитая из значения молекулярного вращения углеводного остатка в цепи значение молекулярного вращения соответствующего метилгликозида. Для гликозидной связи, в образовании которой участвуют вторичные гидроксигруппы [как в (1)], ее определяют по уравнению (2). [c.296]

    Дополнительное биологическое приспособление для поддержания полисахаридных цепей в упорядоченной конформации имеется в полисахаридах с прерывающейся периодичностью строения (см. разд. 26.4.3.1). В таких структурах блоки периодичных последовательностей, имеющие склонность к конформационному упорядочению, прерываются модифицированными последовательностями, конформационно неупорядоченными и потому растворимыми. Тенденция упорядоченных сегментов уходить из раствора из-за легкости их агрегации или энтропийных факторов противостоит тенденции неупорядоченных сегментов оставаться в контакте с растворителем. Если упсрядоченное состояние образовано двумя или более полисахаридными тяжами, то возникает сетчатая структура, в которой также имеются топологические ограничения для агрегации упорядоченных сегментов. Некоторые типы конформационного упорядочения, которые, как было показано, ответственны за образование в этих последовательностях областей связывания, показаны на рис. 26.4.1. Более детальные сведения об упорядоченных конформациях полисахаридов, которые были описаны для растворов и гелей, приведены в обзорах [3, 5]. [c.298]

    Моносахаридным звеньям в составе полимера может быть свойственна большая конформационная подвижность, связанная с возможностью вращения остатка моносахарида вокруг гликозидных связей и с изменением конформации пиранозидного цикла. Такая подвижность должна быть особенно характерной для концевых остатков моносахаридов и коротких олигосахаридных цепей, присоединенных к основной цепи биополимера, так как именно концевые олигосахариды определяют биологическую активность многих углеводсодержащих биополимеров (см. гл. 21). В длинных полисахаридных цепях такая подвижность, несомненно, ограничена, и конформационные изменения могут происходить лишь как кооперативные процессы при достаточно энергичных воздействиях. [c.607]

    Изучение реакционной способности отдельных моносахаридных звеньев и группировок и ее зависимости от структуры соседних звеньев, от конформации цепи и других структурных особенностей полисахаридной молекулы представляет большой интерес и с других точек зрения. Это позволяет более тонко регулировать синтез модифицированных полисахаридов для различных прикладных целей кроме того, сведения о реакционной способности звеньев полисахаридной цепи позволяют сделать определенные заключения о возможности взаимодействия полисахарида с различными реагентами, что особенно важно при обсуждении вопросов биологической активности. К сожалению, подобные сведения практически полностью отсутствуют. Даже относительная реакционная способность отдельных моносахаридных звеньев или отдельных гидроксильных групп по отношению к таким обш,еупотребительным и универсальным реагентам, как ацилирующие или алкилирующие средства, известна лишь в отдельных частных случаях, и суждения о ней основаны фактически на качественных сценках. Исследования такого рода, несмотря на большие трудности, возникающие при их проведении, очень важны для дальнейшего развития химии полисахаридов. [c.635]

    Рентгеноструктурные исследования волокон солей одновалентных катионов, а также расчеты конформаций цепей [проведенных подобно тому, как это было сделано для целлюлозы (см. с. 142)] позволилиЪред-ставить конформации молекул каррагининов. Периоды идентичности волокон X- и г-каррагининов составляют 24,6 и 13,0 А соответственно. По-видимому, полисахаридные цепи,этих соединений существуют в виде двойных спиралей, закрученных вправо. Каждый оборот одинарной спирали содержит три дисахаридных остатка. В /-каррагинине моносахаридные остатки одной спирали расположены посередине между остатками второй спирали. Поскольку здесь идет речь о взаимном рас-молекул-еизвестдай вторичной-структурой, можно гово-  [c.148]

    Карта (ф, г])) для целлобиозы, основанная на критерии допустимых контактов Рамачандрана (см. раздел 3 гл. 2), характерна для всех полисахаридов и дает наглядное представление о возможных спиральных структурах полисахаридных цепей. Из рис. 7.16, показывающего нормальные и экстремальные границы допустимых контактов дисахарида целлобиозы [88], следует, что для полисахаридов со связыванием 1—4 возможны спирали с п — = 2 Ч- 3 (п — число мономерных единиц в витке) и й, близкими к 5 А (й — трансляция мономерной единицы вдоль оси спирали). При этом в целлобиозе и целлюлозе возможно образование водородной связи между гидроксильной группой при Сд и циклическим атомом кислорода. Действительно, подобные внутримолекулярные связи возникают в кристаллах целлюлозы [93] и хитина [94]. В целлюлозе п = 2 и =5,2 А, в хитине п = 2 и (1 = 5,15 А. Кружок, которым на рис. 7.16 отмечена конформация кристаллического полимера целлюлозы, находится в пределах экстремальных границ, причем выход из нормальных границ обусловлен одним коротким контактом С1--С3. Но проигрыш в энергии за счет этого контакта, очевидно, должен компенсироваться образованием внутримолекулярных водородных связей. [c.349]

    В других гелеобразующих полисахаридных системах могут быть иные (и весьма разнообразные) механизмы связывания макромолекул в узлах сетки однако характер требований к ковалентной структуре, соблюдение которых обеспечивает выполнение обусловленных гелеобразова-нием функций, оказывается сходным. Так, например, в гелях альгинатов, т. е. солей альгиновой кислоты, построенной из 1—>4-связанных остатков р-В-маннуроно-вой (23) и а-Ь-гулуроновой (24) кислот, узлы образованы кристаллитами — правильным образом упакованными участками разных молекул с регулярной структурой, подобными по упаковке кристаллическим участкам элементарных фибрилл целлюлозы. Как мы уже говорили, цепи альгиновых кислот построены по блочному принципу в них чередуются сегменты регулярной структуры из остатков одного типа с сегментами, в которых остатки обоих типов распределены более или менее случайно. Регулярные участки, подобно целлюлозе, имеют стержнеобразную конформацию и потому способны ассоциировать в кристаллиты, а для нерегулярных участков правильная упаковка невозможна, и они образуют в сетке промежутки между узлами. [c.170]


Смотреть страницы где упоминается термин Конформация полисахаридных цепей: [c.137]    [c.97]    [c.284]    [c.137]    [c.142]    [c.488]    [c.488]    [c.494]    [c.183]   
Биохимия Том 3 (1980) -- [ c.118 , c.121 ]




ПОИСК







© 2025 chem21.info Реклама на сайте