Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводный состав и структура

    Углеводный состав и структура [c.336]

    Определение структуры гликопротеинов требует (как и в случае других молекул) их предварительной очистки, которая может быть достигнута с помощью методов, обычно применяемых для белка. Для очистки некоторых гликопротеинов оказалось весьма плодотворным также применение аффинных колонок с лектинами (см. ниже). Углеводный состав гликопротеинов определяли после кислотного гидролиза при помощи газожидкостной хроматографии—масс-спектрометрии (ГЖХ—МС). Для изучения детальной структуры олигосахаридных цепей было опробовано множество различных методов. Наиболее эффективной оказалась комбинация ГЖХ—МС и ЯМР-спектрометрии с высоким разрешением. Особенности связей между сахарами в гликопротеинах (рассмотрение которых не входит в задачу данной главы) имеют фундаментальное значение для структуры и функций этих молекул. [c.300]


    Белковый, липидный и углеводный состав клеточных мембран находится в состоянии динамического равновесия в течение всей жизни клетки. Это равновесие является ранним завоеванием эволюции, Основной план химического строения мембран сформировался давно — у разных видов, не объединенных ни генетической, ни экологической общностью, встречаются одни и те же фосфолипиды в близких соотношениях (Крепе, 1981). Видимо, этот набор фосфолипидов обеспечил мембранным структурам какие-то преимущества. Такими преимуществами могут быть термодинамическая стабильность, динамическая подвижность, сочетание легкости обмена компонентами со средой и определенной устойчивости структуры, избирательность реакции. Однако вопрос о том, каким образом набор фосфолипидов обусловливает те, а не иные свойства мембраны, не имеет однозначного ответа. [c.52]

    М.-гликопротеин, в углеводную часть к-рого входят остатки сиаловой к-ты и гексозаминов. Молекула фермента состоит нз двух субъединиц (мол. масса каждой ок. 60 тыс.), на одной из к-рых находится активный центр, содержащий ФАД. В состав активного центра входят также остатки гистидина и по крайней мере 2 из 7-8 принадлежащих ферменту групп SH, к-рые необходимы для проявления каталитич. активности. Величина pH, при к-рой проявляется макс. каталитич. активность, зависит от источника фермента и находится в области 7,5-9,0 р/ 4,7-5,3. Известны первичные структуры нек-рых М. и созданы гипотетич. модели строения их активного центра. [c.131]

    В настоящее время в основном известен состав и структура полисахаридов гемицеллюлоз клеточных стенок многих видов растительной ткани. Растительные ткани, имеющие наибольшее распространение и промышленное применение для химической переработки, можно разделить на несколько основных групп древесина хвойных пород, древесина лиственных пород, кора хвойной и лиственной древесины, однолетние растения и их части. Каждая из приведенных групп характеризуется близким по химическому составу углеводным комплексом. Гемицеллюлозы различных групп растительной ткани отличаются по составу, соотношению компонентов, химическим и физическим свойствам. [c.160]

    Типы связей между углеводными компонентами и белками определены только у ряда гликопротеинов, аминокислотный состав и структура которых известны (иммуноглобулины, гормоны) они включают 0-гликозидные [c.91]


    Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета). [c.169]

    Овомукоид — глюкопротеид, выделенный из белка яиц, — изучен весьма тщательно. При коагуляции яичных белков в результате нагревания овомукоид остается в фильтрате из этого фильтрата он может быть осажден прибавлением этилового спирта. Углеводный компонент этого протеида, составляющий 20% всего соединения [56, 57], содержит 3 молекулы маннозы, 7 молекул ацетилглюкозамина и 1 молекулу галактозы. Таким образом, в состав этого углевода входят 11 остатков моносахаридов, и его структура, вероятно, соответствует следующей формуле [56]  [c.235]

    Роданистый калий и роданистый аммоний в дозах 0,00005—0,5 мг/кг не влияют на динамику веса, морфологический состав и пероксидазную активность крови. При дозах 0,00005—0,005 мг/кг не наблюдалось нарушений углеводного обмена, а также морфологических изменений структуры внутренних органов подопытных животных. [c.185]

    Типы нуклеиновых кислот. В 1930 г. были определены два типа нуклеиновых кислот — ДНК и РНК, различающиеся химическим составом, молекулярной массой, сложностью структуры молекул, а также выполняемыми функциями в организме. Название нуклеиновых кислот обусловлено присутствием в кислоте углевода если в состав нуклеиновой кислоты входит рибоза, то она называется рибонуклеиновая кислота (РНК), а если входит дезоксирибоза, то нуклеиновая кислота называется дезоксирибонуклеиновая (ДНК). Кроме углеводного компонента, отдельные типы нуклеиновых кислот различаются составом азотистых оснований и структурой молекулы. [c.216]

    Нуклеиновые кислоты подразделяются на рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК) кислоты. В основу такой классификации положена химическая структура углеводного компонента нуклеиновых кислот. Если в состав нуклеиновых кислот входит рибоза, кислоты называются рибонуклеиновыми, если дезоксирибоза— дезоксирибонуклеиновыми. РНК и ДНК отличаются и по некоторым азотистым основаниям. [c.140]

    Продукты протеолиза имели более низкое содержание азота, чем исходное вещество А, а также отличались друг от друга и от вещества А количественным содержанием аминокислот. Качественный состав углеводной части продуктов расщепления был идентичен, а количественный сходен с составом исходного вещества А. Аналогичные изменения наблюдались независимо от специфичности групповых веществ крови и это подтверждает, что при обработке фицином разрываются общие для всех веществ связи при этом ие затрагиваются те части углеводной цепи, которые ответственны за специфичность. Вызывает удивление то, что при разрушении пептидной части молекулы группового вещества наблюдается уменьшение серологической активности, измеренной по угнетению реакции гемагглютинации. По-видимому, хотя сама пептидная часть не определяет специфичность группового вещества, тем не менее для максимального эффекта специфических групп, очевидно, необходима целостность макромолекулярной структуры. [c.197]

    Пуклеопротеины состоят из белков и нуклеиновых кислот. Последние рассматриваются как простетические группы. В природе обнаружено 2 типа нуклеопротеинов, отличающихся друг от друга по составу, размерам и физико-химическим свойствам,— дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНН). Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП—дезоксирибозой. Термин пуклеопротеины связан с названием ядра клетки, однако ДНП и РНП содержатся и в других субклеточных структурах. Следовательно, речь идет о химически индивидуальном классе органических веществ, имеющих своеобразные состав, структуру и функции независимо от локализации в клетке. Доказано, что ДНП преимущественно локализованы в ядре, а РНП —в цитоплазме. В то же время ДНП открыты в митохондриях, а в ядрах и ядрышках обнаружены также высокомолекулярные РНП. [c.86]

    Разные П. могут существенно отличаться размером белковой части молекулы, а также числом, природой и расположением углеводш>1х цепей. В состав макромолекулы П могут одновременно входить гликозаминогликоновые цепи неск. типов, а также О- и N-олигосахаридные фрагменты, характерные для гликопротеинов. Многообразие П. затрудняет создание четкой классификации и номенклатуры этих соединений. Обычно указывают тип ткани, из к-рой получен П., общий размер молекулы (условно различают большие и малые П.), преобладающую структуру углеводных цепей (возможны гибридные формы) и способность к специфич. взаимодействиям с гиалуроновой к-той ( агрегирующие и неагрегирующие П.) Строение молекул различных П показаны на рисунке [c.112]

    Химический состав и свойства гемицеллюлоз находятся в тесной связи с природой растительной ткани. Основным компонентом гемицеллюлоз древесины хвойных пород являются гексозаны, а лиственной древесины — пентозаны. Пока еще не установлено, чем обусловлена эта взаимосвязь и какие функции в процессе жизнедея-"йельности растений выполняют отдельные углеводные полимеры. Но поскольку такая связь существует, целесообразно рассмотреть состав и структуру полисахаридов гемицеллюлоз по указанным ос-новт ым группам растительных тканей. [c.160]


    В состав гемицеллюлоз подсолнечной лузги входит несколько полисахаридов, различных по составу и структуре молекул. Из гемицеллюлоз лузги подсолнечника Смена были выделены полисахариды 4-0-метилглюкуроноксилан, глюкоманнан и арабогалактановая фракция [206]. Основная масса 4-0-метилглюкуроноксилана легко выделяется экстракцией холоцеллюлозы 107о-ным КОН с последующим осаждением 30%-ным этанолом из нейтрализованного экстракта. При этом часть 4-0-метилглюкуроноксилана остается в растворе и вместе с другими полисахаридами подсолнечной лузги образует трудно разделяющуюся смесь. Для полной характеристики полисахаридного состава гемицеллюлоз применялось фракционированное выделение и разделение их с последующим анализом фракций по углеводному составу гидролизатов. [c.257]

    Сложные липиды - фосфолипиды и фосфосфинголипиды, содержащие глицерин - в случае фосфолипидов, и сфингозин - в случае фосфосфинголи-пидов, включающих сфингомиелины. Кроме того, в состав сложных липидов входят жирные кислоты, фосфатный остаток, аминоспирты и углеводные компоненты. На рис. 41 представлены структуры простых и сложных липидов. [c.97]

    Полный гидролиз групповых веществ крови показывает, что в их состав входит около 80—85% углеводов (галактоза, фукоза, N-ацетилглюкозамин и N-ацетилгалактозамин) и около 15—20% аминокислот, из которых пролин, треонин и серин составляют более половины. В некоторых образцах групповых веществ, в частности в групповых веществах из жидкости кисты, содержатся также N-ацетилнейраминовая кислота, которая, очевидно, в этом случае заменяет часть остатков фукозы. Групповые вещества различного типа А, В, Н я т. д.) очень мало отличаются друг от друга по составу, хотя некоторые детали все же можно отметить так, например, в групповом веществе Le содержание фукозы заметно понижено. В настоящее время установлено, что специфичность групповых веществ зависит от находящихся на периферии молекулы олигосахаридных цепей, которые являются иммунологическими детерминантами (см. ниже). Однако в целом структура групповых веществ, несмотря на значительное число исследований, остается неясной. При действии разбавленных кислот и оснований (щелочь, сода, гидроксиламин) групповые вещества отщепляют значительную часть углеводов Пептидная часть биополимера, напротив, отличается стойкостью и только в незначительной степени распадается под действием папаина и фицина . Эти данные позволяют отнести групповые вещества к гликопептидам типа III, в которых центральная пептидная цепь окружена присоединенными к ней олигосахаридными цепями , что было экспериментально подтверждено в самое последнее время полукинетическим методом исследования (см. стр. 569). При изучении хода гидролиза группового вещества А разбавленными кислотами и щелочами оказалось, что отщепляются лишь мелкие углеводные фрагменты, в то время как все аминокислоты остаются в высокомолекулярной части. Лишь в жестких условиях гидролиза, когда распаду подвергаются и пептидные связи, а также при избирательной деструкции пептидных связей высокомолекулярный фрагмент начинает дробиться и в гидролизате появляются аминокислоты. Подобная картина гидролиза может наблюдаться только в том случае, если пептидная часть составляет основу гликопротеина (тип III). [c.581]

    Для биосинтеза смешанных биополимеров, содержащих олигосаха ридные цепи, существуют две возможности включение в состав полимера уже готовой олигосахаридной цепи или ее ступенчатое наращивание в составе биополимера. В пользу первой возможности говорит выделение из молока нескольких уриднндифосфатдисахаридов и трисахаридов, содержащих остатки N-ацетилглюкозамина, галактозы, фукозы и N-ацетилнейраминовой ки лoты " . Близость структуры выделенных УДФ-трисахаридов и углеводных цепей фетуина и орозомукоида позволяет [c.614]

    Следующие свойства рецептора особенно интересны для иейрохимиков химический состав (т. е. состоит ли он из белка углевода, глико- или липопротеина) молекулярная масса и четвертичная структура аминокислотный состав и последовательность углеводная последовательность пространственная организация молекулярных компонентов число лигандов и константы диссоциации лигандов со связывающими их участками независимость или кооперативность связывающих участков взаимодействие рецептора как со своим окружением (т. е. с мембранными липидами, с другими мембранными белками), так и с компонентами вне- и внутриклеточного пространства. Эти данные могут стать основой для попытки построения модели механизма функционирования рецептора. [c.243]

    В отличие от химии белков и нуклеиновых кислот, где определение первичной структуры сводится к установлению последовательности аминокислот или нуклеиновых оснований в линейной цепи биополимера, в случае углеводных биополимеров задача существенно усложняется. Для выяснения строения олигосахарида необходимо определить его моносахаридный состав, последовательность моносахаридных остатков и места разветвления олигосаха-ридной цепи, места присоединения моносахаридных остатков друг к другу, размеры циклов моносахаридных звеньев, конфигурацию гликозидных связей. [c.463]

    СЯ в повышении активности различных ферментов. Входя в состав витамина В , весьма активно влияющего на поступление азотистых веществ и увеличение содержания хлорофилла и аскорбиновой кислоты, К. активирует биосинтез и повышает содержание белкового азота в растениях, а также играет значительную роль в ряде процессов, происходящих в живом организме. В повышенных концентрациях К. весьма токсичен, прием внутрь большой дозы К. может вызвать быструю гибель. У лиц, подвергавшихся хроническому воздействию соединений К., снижается артериальное давление, в тканях наблюдается увеличение содержания молочной кислоты, нарушаются функции печени. При этом выраженные, клинические проявления могут быть стертыми или отсутствовать вовсе. Изменения в углеводном обмене связаны с нарушениями в эндокринных отделах поджелудочной и щитовидной желез. Нарушения углеводного обмена изменение формы гликемической кривой (уплощение), нарушение толерантности к глюкозе. Ионы К. вступают в хелатные комплексы с белками, разрушающими последние. Нарушается активность мембранных ферментов, что ведет к увеличению проницаемости клеточньгх мембран, повышению в крови уровня трансаминаз, лактатдегидрогеиазы, альдолазы. Действие К. и его соединений на организм приводит к расстройствам со стороны дыхательных путей и пищеварительного тракта, нервной системы, влияют на кроветворение, а также нарушают многие обменные процессы, избирательно действуют на обмен и структуру сердечной мышцы. Все это позволяет считать К. ядом общетоксического действия. [c.457]

    Токсическое действие. Обладает общеядовитым и кожно-нарывным действием при любом пути воздействия на организм. Техническому Л. присуще, кроме того, раздражающее действие. Общеядовитое действие обусловлено способностью Л. нарушать внутриклеточный углеводный обмен. Механизм токсического действия заключается во взаимодействии Л. с группами — 8Н дигидро-липоевой кислоты, входящей в состав пируватдегидрогеназной ферментной системы. Таким образом, нарушается структура фермента, и он выключается из участия в окислительно-восстановительных процессах организма. В итоге нарушается энергоснабжение всех органов и тканей организма. Местное действие вещества обусловлено легкостью его взаимодействия с белками кожных покровов и тканей. [c.814]

    Для образования большого количества полимера требуется легкодоступный и дешевый источник углерода. Ферментация позволяет культивировать организм-продуцент в строго определенных условиях среды, контролируя, таким образом, процесс биосинтеза и влияя на тип продукта и его свойства. Специфи- чески изменяя условия роста, можно менять молекулярную массу и структуру образующегося полимера, В ряде случаев максимальная скорость синтеза полисахарида достигается в логарифмической стадии роста, в других — в поздней логарифмической или в начале стационарной. Обычно углеводными субстратами служат глюкоза и сахароза, хотя полисахариды могут образовываться и при росте микроорганизмов на н-алка-,яах( С12-61), керосине, метаноле, метане, этаноле, глицероле и этиленгликоле. Недостатком проведения процесса в ферментерах является то, что среда часто становится очень вязкой, поэтому культура быстро начинает испытывать недостаток кислорода мы все еще не умеем рассчитывать соотношение между скоростью перемешивания неньютоновских жидкостей и подачей кислорода. Необходимо также контролировать быстрые изменения pH среды. И все же упомянутый метод позволяет быстро синтезировать полимер для того, чтобы определить его физические свойства, а также дает возможность оптимизировать состав среды, главным образом в отношении эффективно- сти различных углеводных субстратов. Часто в качестве лимитирующего фактора применяют азот (соотношение углерод азот — 10 1), хотя можно использовать и другие (серу, магний, калий и фосфор). Природа лимитирующего фактора способна определять свойства полисахарида, например его вяз- костные характеристики и степень ацилирования. Так, многие оолисахариды, синтезируемые грибами, фосфорилированы. При недостатке фосфора степень фосфорилирования может уменьшаться или становиться равной нулю в этих условиях может даже измениться соотношение моносахаридов в конечном по- [c.219]

    Полипептидный гормон инсулин участвует в регуляции углеводного обмена. Молекула бычьего инсулина содержит 51 аминокислоту и состоит из двух цепей. Последнее подтвернедается присутствием двух N-концевых аминокислот — глицина и фенилаланина. Цепь с N-концевым глицином называется А-цепью и содержит 21 аминокислоту цепь с N-концевым фенилаланином называется В-цепью, и в состав ее входит 30 аминокислот. Сэнгер и его сотрудники окислили инсулин надмуравьиной кислотой и провели хроматографическое разделение двух цепей. После этого каждую цепь подвергли ферментативному и кислотному гидролизу. На фиг. 27 и 28 указаны главные пептиды, полученные при гидролизе каждой из цепей, и приведены полные структуры цепей, установленные на основе этих данных. Видно, что места, в которых трипсин, химотрипсин и пепсин расщепляют цепи, согласуются с тем, что мы знаем о специфичности этих ферментов в отношении синтетических соединений. Обнаружено также и несколько дополнительных мест расщепления, в частности при гидролизе, катализируемом пепсином. Особо следует обратить внимание на то, что перекрывающиеся пептиды, полученные при использовании разных гидролитических методов, дополняют друг друга и позволяют однозначно установить общую аминокислотную последовательность. Для каждого из главных пептидов, приведенных на фиг. 27 и 28, аминокислотная последовательность была определена путем неспецифического гидролиза кислотой, установления последовательности аминокислот в образовавшихся ди-, три- и тетрапептидах и объединения полученных данных в общую картину. Как указывалось выше, в настоящее [c.91]

    К гликопротеинам относят и так называемые вещества групп крови, хотя в отличие от других гликопротеинов они содержат до 80% углеводов. Такое отнесение сделано на основании структуры их углеводной части (состав и разветвлешюсть гетеросахаридных цепей). [c.73]

    Гликолипидами назьгвают соединения, молекулы которых содержат липидный и углеводный фрагменты, соединенные ковалентной связью. Гликолипиды охватывают разнообразные по структуре соединения и представлены в различных организмах животного, растительного и бактериального происхождения. В последнее время значительно возрос интерес к данному классу соединений, что обусловлено их важной биологической ролью. Полагают, что гликолипиды выполняют как метаболические, так и структурные функции. Они входят в состав клеточных и внутриклеточных мембран, обладают антигенными свойствами [ИО]. [c.259]

    Изоферменты — формы ферментов, которые имеют различную первичную структуру, но выполняют идентичную каталитическую функцию. Появление новых изоферментов возможно при генетическом нарушении процессов биосинтеза белка. Ингибирование ферментов — снижение активности фермента (скорости процесса) под воздействием веществ-ингибиторов. Часто это метаболиты или субстраты реакций. Инозит — циклический шестиатомный спирт циклогексана, витаминоподобное вещество входит в состав фосфолипидов, регулирует липидный и углеводный обмен. В медицинской и спортивной практике используется в фосфорилированном виде как фитин. [c.490]

    Сравнительно недавно было показано, что карнозин также защищает мозговую ткань от образования амилоидозных отложений белка. Амилоидоз — системное заболевание, характеризующееся отложением белково-углеводных комплексов в межклеточном пространстве нервной ткани. Кроме ассоциации пептидных фрагментов в этом процессе важную роль играет сшивка пептидных фибрилл альдегидными группами редуцирующих сахаров и малоновым диальдегидом, который является вредным конечным продуктом окисления липидов. Защитный эффект карнозина при амилоидных перерождениях ткани обеспечивается, по-видимому, электрон-акцепторной активностью имидазольного кольца, препятствующей перекисному окислению. Однако эта активность проявляется только после включения гистидина в состав дипептида, имеющего значительный дипольный момент и пространственную стабилизацию кольца относительно этого диполя. Свободный гистидин такой активностью не обладает (Alberts et al., 1994). Определенную роль в дестабилизации амилоидных отложений, возможно, играет и Р-структура аланина (Iverson, 1997). [c.32]

    Дифитанильные фосфолипиды обладают такой же стереоконфигурацией, как и фосфо-(глико-) липиды, аналогичным расположением зарядов в полярных головах, и образуют липосомы в смеси с гликолипидами. Дифитанильные фосфолипиды, имеющие полярные головы разной природы, входя в бислой, обеспечивают его асимметричное строение, поскольку различный набор полярных голов по обе стороны гидрофобной сердцевины мембраны определяется структурой входящих в ее состав соединений. При этом, как правило, с внутренней, цитоплазматической стороны бислоя оказываются глицерофосфаты, а с внешней — молекулы глицерина, к которым прикрепляются различные углеводные радикалы. [c.11]


Смотреть страницы где упоминается термин Углеводный состав и структура: [c.99]    [c.159]    [c.70]    [c.355]    [c.295]    [c.540]    [c.428]    [c.312]    [c.445]    [c.355]    [c.506]    [c.325]    [c.18]    [c.33]    [c.107]    [c.203]    [c.392]   
Смотреть главы в:

Неорганическая биохимия Т 1 _2 -> Углеводный состав и структура

Гликопротеины Том 2 -> Углеводный состав и структура




ПОИСК







© 2025 chem21.info Реклама на сайте