Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент активности слабой кислоты от ионной силы, уравнение

    В чем сущность теории электролитической диссоциации 2. Что такое кислоты, основания и соли с точки зрения теории электролитической диссоциации 3. Что такое степень электролитической диссоциации От каких факторов она зависит 4. Что такое константа электролитической диссоциации От каких факторов она-зависит Как ее увеличить . Как уменьшить 05. Чем обусловливается сила электролитов 6. Как формулируется и математически выражается закон разбавления Оствальда ф7. Что называется активностью ионов, молекул, коэффициентом активности, ионной силой раствора 8. Что называется произведением растворимости Примеры. От каких факторов оно зависит ф9. Как влияет введение в раствор одноименного иона на смещение ионного равновесия ф10. Можно ли к сильным электролитам применить закон действующих масс фИ. При каких условиях реакция между электролитами протекает до конца 12. Составьте молекулярные и ионные уравнения образования малорастворимых веществ ВаСг04, АдзРОд, СаСОз, Си(0Н)2, Ре(ОН)з. ф13. Вычислите константу диссоциации одноосновной слабой кислоты, если степень диссоциации ее в 0,1 н. растворе равна 1, 32% И. Вычислите степень диссоциации муравьиной кислоты (НСООН) в 0,5 н. растворе, если известно что концентрация ионов Н+ в нем равняется 0,1 моль/я. 15. Рассчитайте для сероводородной кислоты константу диссоциа- [c.99]


    Если раствор имеет достаточно низкую ионную силу и коэффициенты активности можно считать равными единице, что приблизительно верно для растворов слабых кислот, то это уравнение можно написать так  [c.518]

    Исследуя химические реакции, катализируемые слабыми кислотами, С. Аррениус обнаружил усиление каталитического эффекта при добавлении в раствор нейтральных солей, не содержащих одноименных с кислотой анионов. Это явление называется первичным солевым эффектом. В то же время он наблюдал, что добавление соли слабой кислоты, подавляющее диссоциацию и снижающее концентрацию ионов водорода, уменьшает скорость каталитического процесса существенно меньше, чем следовало из закона действия масс (вторичный солевой эффект). Для истолкования вторичного солевого эффекта предполагают, что каталитической активностью обладают не только ионы водорода (или гидроксила), но и анионы, молекулы недиссоциированных кислот (или оснований) и молекулы воды. Первичный солевой эффект был объяснен Я- Брёнстедом и Н. Бьеррумом. Используя уравнение Дебая — Гюккеля для коэффициента активности, они показали, что логарифм константы скорости к реакции между двумя ионами линейно зависит от корня квадратного из ионной силы раствора  [c.85]

    Солевые эффекты могут быть рассчитаны из уравнения закона действия масс, примененного к буферному равновесию, вместе с формулой, которая характеризует изменение коэффициентов активности при увеличении ионной силы. Для буферного раствора, состоящего из одноосновной, незаряженной слабой кислоты НА и ее полностью диссоциированной соли, мы имеем  [c.106]

    Как уже отмечалось, введение нейтральных электролитов в раствор слабой кислоты вызывает солевой эффект, проявляющийся в увеличении концентрационной констацты диссоциации слабой кислоты. У одноосновных кислот в области средних значений ионной силы этот эффект невелик и им часто можно пренебречь. У многоосновных кислот продуктами диссоциации являются двухзарядные или еще более высокого заряда ионы, поэтому эффект ионной силы в соответствии с уравнением (2.11) увеличивается. Это всегда следует иметь в виду, хотя при проведении приближенных расчетов коэффициенты активности часто не учитываются. Учет эффекта ионной силы бывает совершенно необходим при сравнении, например, силы кислот, устойчивости комплексов и т. д. Обязательным условием сравнения является рассмотрение свойств при одинаковой ионной силе, созданной одним и тем же электролитом. [c.61]


    Для вывода уравнений кривых титрования используют общие принципы. Во-первых, составляют уравнения, число которых равно числу неизвестных величин (не считая коэффициентов активности ионов), таких, как электронейтральность раствора, произведения активностей ионов воды и осадков, константы диссоциации слабых электролитов (кислот, оснований, комплексов), уравнения материального баланса взятых и полученных веществ. Затем проводят математические преобразования с целью получения одного линейного уравнения той или иной степени, содержащего, не считая коэффициентов активности ионов, одну неизвестную величину — концентрацию одного из ионов. В некоторых случаях не удается получить линейное уравнение, тогда приходят к системам уравнений, доступных для программирования на ЭВМ. Уравнения решают методом последовательных приближений. Сначала проводят вычисления при /= 1. После решения основного уравнения находят концентрации всех других ионов при помощи уравнений, которые положены в основу расчетов. Затем находят ионную силу раствора и вычисляют средний коэффициент активности ионов. После этого повторяют вычисление с учетом коэффициентов активности ионов. После двух-трех приближений значения коэффициентов активностей и равновесных концентраций ионов становятся практически постоянными. [c.40]

    Для растворов слабых электролитов допустимо вычислять величины pH и рОН без учета активностей ионов, поскольку ионная сила в таких растворах невелика и коэффициенты активности ионов близки к единице. Для слабых кислот и оснований величины pH и рОН с незначительной ошибкой находят из уравнений [c.37]

    Применяют и менее точный метод, позволяющий избежать определения рКа при различных значениях ионной силы находят р/Са при какой-то приемлемой небольшой величине ионной силы, а затем вычисляют коэффициенты активности, используя уравнение Дебая — Хюккеля (III.11). Хотя теория Дебая — Хюккеля была первоначально создана для сильных электролитов, она применима, и к диссоциированной части слабых электролитов. Для сопряженной кислоты с зарядом г уравнение (111.11) принимает вид [c.82]

    Если ионная сила раствора достаточно низка и коэффициенты активности можно принять равными единице, что приблизительно верно для слабых кислот, то последний сомножитель в уравнении (XVIII, 86) можно отбросить и уравнение примет вид  [c.504]

    Из последнего уравнения видно, что степень гидролиза соли слабого основания и слабой кислоты, когда /Смон /Снлн, от концентрации соли зависит в очень незначительной степени. Эта зависимость сказывается только в связи с изменением ионной силы раствора и как следствие коэффициента активности. [c.214]


Смотреть страницы где упоминается термин Коэффициент активности слабой кислоты от ионной силы, уравнение: [c.223]    [c.104]    [c.46]   
Физическая химия растворов электролитов (1950) -- [ c.430 ]

Физическая химия растворов электролитов (1952) -- [ c.430 ]




ПОИСК





Смотрите так же термины и статьи:

Активность ионная

Активность ионов

Активность уравнение

Ионная сила

Ионный коэффициент активности

Кислота ионная

Кислота слабые

Кислоты сила

Коэффициент активности слабой кислоты

Коэффициент активности уравнение

Коэффициент ионита

Коэффициенты кислот

Слабов

Уравнения ионные



© 2025 chem21.info Реклама на сайте