Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химическое взаимодействие природа

    Во многих аналогичных ситуациях, когда прочность твердых тел различной природы, контактирующих с теми или иными средами, оказывается пониженной, эта объясняется уменьшением поверхностной энергии твердого тела в результате адсорбции, хемосорбции, смачивания и других физико-химических взаимодействий [254]. Такой подход, впервые предложенный П. А. Ребиндером, оказывается весьма плодотворным и при описании геологических процессов. Однако сложность природных систем и недоступность большинства из них. прямому наблюдению требует большой осторожности в выводах и тщательного учета всех взаимосвязанных факторов, от которых зависит возможность эффекта и степень его проявления. К этим факторам относятся химический состав твердого тела и среды, определяющий характер межатомных взаимодействий реальная структура (дефектность) твердого тела условия деформирования. [c.92]


    Основы физической и коллоидной химии позволяют заложить фундамент развития качественных и количественных представлений об окружающем мире. Эти знания необходимы для дальнейшего изучения таких специальных дисциплин, как агрохимия, почвоведение, агрономия, физиология растений и животных и др. Современное состояние науки характеризуется рассмотрением основных физико-химических процессов на атомно-молекулярном уровне. Здесь главенствующую роль играют термодинамические и кинетические аспекты сложных физико-химических взаимодействий, определяющих в конечном счете направление химических превращений. Выявление закономерностей протекания химических реакций в свою очередь подводит к возможности управления этими реакциями при решении как научных, так и технологических задач. Роль каталитических (ферментативных) и фотохимических процессов в развитии и жизни растений и организмов чрезвычайно велика. Большинство технологических процессов также осуществляется с применением катализа. Поэтому изучение основ катализа и фотохимии необходимо для последующего правильного подхода к процессам, происходящим в природе, и четкого определения движущих сил этих процессов и влияния на них внешних факторов. Перенос энергии часто осуществляется с возникновением, передачей и изменением значений заряда частиц. Для понимания этой стороны сложных превращений необходимо знание электрохимических процессов. Зарождение жизни на Земле и ее развитие невозможно без участия растворов, представляющих собой ту необходимую среду, где облегчается переход от простого к сложному и создаются благоприятные условия для осуществления реакций, особенно успешно протекающих на разделе двух фаз. [c.379]

    В любых гетерогенных системах, особенно в высокодисперсных, природа границ между частицами дисперсной фазы и дисперсионной средой, молекулярное строение границ и физико-химические взаимодействия на этих границах определяют многочисленные явления и процессы, характерные для данной системы. [c.6]

    Коррозия. Физико-химическое взаимодействие между металлом и средой, которое приводит к изменению свойств металла, а часто может приводить к ухудшению свойств металла, среды или технической системы, частью которой они являются (это взаимодействие обычно имеет электрохимическую природу). [c.20]


    Давно известный прием — применение смазок трущихся поверхностей — имеет весьма сложную природу. Здесь происходит физико-химическое взаимодействие смазки с трущимися поверхностями, включая пластифицирование, образование адсорбционных и хемосорбционных поверхностных слоев. Получают распространение твердые (порошковые) смазки и твердые смазочные покрытия. [c.51]

    Варианты газовой хроматографии — газо-жидкостная и газо-адсорбционная— имеют свои преимущества и недостатки, поэтому выбор наиболее эффективного способа анализа в каждом случае определяется характером конкретной задачи. Так, в начальный период развития газовой хроматографии анализировали только газы и легколетучие жидкости на колонках с сильными адсорбентами. Переход к газо-жидкостной хроматографии способствовал уменьщению коэффициента распределения Г для более тяжелых сорбатов, в результате чего появилась возможность анализировать их хроматографическим методом. Использование неподвижных жидкостей самой разнообразной химической природы сделало газожидкостную хроматографию универсальным методом, позволяющим осуществлять разделение на основе различных видов физико-химических взаимодействий между сорбатами и растворителями. Кроме того, линейность изотерм растворения обеспечивала получение практически симметричных пиков сорбатов (при правильном подборе условий процесса). Однако существенные ограничения, связанные с летучестью неподвижных жидкостей, не позволяли проводить высокотемпературные процессы разделения высококипящих веществ ни в аналитическом, ни в препаративном вариантах. Поэтому дальнейшее развитие газо-адсорбционной хроматографии с применением однороднопористых адсорбентов различной химической природы было необходимо для обеспечения дальнейших успехов газовой хроматографии как метода анализа и исследования высококипящих соединений. [c.33]

    Природа физико-химического взаимодействия. Физико-химическое взаимодействие обусловлено различными причинами, к числу [c.248]

    Анализ данных по адгезии и смачиванию расплавленными металлами графита и алмаза свидетельствует о том, что природа физико-химического взаимодействия зависит от положения металла в периодической таблице элементов. [c.265]

    Перенос тепловой энергии в многофазных полидисперсных средах происходит через непосредственные контакты между твердыми частицами и через разделяющий их промежуточный слой газа или жидкости. Поэтому при установлении общих закономерностей, определяющих теплопроводность горных пород, необходимо рассматривать такие факторы, как физико-химическая природа твердого вещества породы и насыщающего ее флюида, количественное соотнощение твердого вещества и газообразной или жидкой фаз, взаимное расположение компонентов и фаз и их физико-химическое взаимодействие. Перечисленные факторы при передаче тепла неравнозначны. Опыты, выполненные на упаковках из шариков с весьма различными свойствами (металл, кварц), показали, что физико-химическая природа материала частиц не определяет теплопроводности зернистой среды, так как доля тепла, передаваемого через непосредственный контакт твердых частиц, мала по сравнению с теплом, передаваемым от частицы к частице через промежуточный слой [51]. Таким образом, тепловые свойства промежуточной среды между частицами, в особенности поверхностной фазы, ее количество и пространственное расположение имеют первостепенное значение для теплопроводности горных пород. [c.116]

    Механизм разрушения органоволокнитов при действии внешних нагрузок почти не изучен. Принимая во внимание рассмотренные выше особенности состава и структуры этих материалов, а также резко выраженную анизотропию свойств самого волокна, можно полагать, что распределение напряжений между компонентами, их деформация, зарождение и рост микродефектов, приводящих к разрушению, существенно отличаются от таковых в известных композиционных материалах. Полимерная природа наполнителя и сложный комплекс физико-химических взаимодействий связующего с волокном в органоволокнитах обусловливают необходимость оценки механических свойств компонентов непосредственно в композиции [43, с. 42]. [c.278]

    Лабораторные исследования физико-химического взаимодействия компонентов золы и минеральных включений топлива в начальной стадии шлакообразования позволили в известной мере определить начало образования и формирования шлаков, установить зависимость развития температуры в окислительной зоне от природы топлива и значение организации технологического процесса для рациональной переработки твердого топлива в газ. [c.166]

    Судя по поведению при трении силиконовых жидкостей обеих групп, эффективность их смазочного действия определяется не возникновением физических или химических связей между молекулами силиконов и металлами, а вязкостью кремнеорганических соединений. Молекулы силиконов, в силу специфических особенностей природы и строения, не образуют ориентированных пленок типа частокола , а склонны располагаться на поверхностях металлов плашмя . Иными словами, толщина пленки силикона, непосредственно связанной с поверхностью, не зависит от длины молекулы. Следовательно, если бы действие силиконов как смазочных сред определялось физико-химическим взаимодействием их с металлами, эффективность этого действия не зависела бы от молекулярного веса жидкости, т. е. от ее вязкости. Как видно из изложенного выше, экспериментальные данные противоречат этому заключению. [c.143]


    Природа физико-химического взаимодействия элементов друг с другом, а следовательно, и тип диаграммы состояния определяются совокупностью целого ряда па- [c.12]

    Интерес к особым свойствам граничных слоев воды имеет давнюю историю [444]. Результаты многочисленных исследований свидетельствуют о том, что свойства этих слоев существенно отличаются от свойств объемной воды [42, 43, 415, 421, 422]. Наиболее простое описание этих различий можно выполнить с помощью представления о связанной воде [1, 64, 445]. Для фосфолипидных бислоев это означает, что одна молекула, например, лецитина связывает 20 молекул воды, из которых 2—3 связаны сильно , а остальные представляют собой промежуточный тип слабо связанной воды [446]. Очевидно, что в рамках такого упрощенного описания довольно трудно выяснить физико-химическую природу воздействия поверхности на структуру граничных слоев воды или электролита. В работах Б. В. Дерягина [42, 43, 415] сделан переход к более детальному описанию граничных слоев было высказано предположение о существовании специфического взаимодействия, существенно отличающегося от классических (электростатического и вандер-ваальсового) и возникающего в процессе сближения частиц или поверхностей в зоне перекрытия граничных слоев. [c.161]

    В непористых сорбционно-диффузионных мембранах сплошная матрица и газы образуют раствор. Структурная основа мембраны может быть кристаллической, аморфной или аморфно-кристаллической. Химический потенциал каждого компонента определяется, в первую очередь, взаимодействием с матрицей, а также другими компонентами разделяемой газовой смеси. Природа связи — физико-химическая (силовое поле молекул), механизм переноса — диффузионный, возможна диссоциа ция молекул, однако образование новых химических соединений [c.13]

    В ходе химико-технологических процессов химическому превращению подвергаются разнообразные вещества, обладающие различными физико-химическими свойствами. Разнообразна и сама природа химического взаимодействия. Естественно, что этому многообразию соответствует многообразие химических реакторов. Однако в научной литературе практически отсутствует сколько-нибудь приемлемая классификация химических реакторов, еслп иметь в виду не конструктивные особенности аппаратов, а внутреннюю сущность процессов, характеризуемую определенным сочетанием физических и химических явлений. [c.9]

    В ряде случаев при моделировании сложных объектов химической технологии необходимо учитывать процессы как детерминированной, так и стохастической природы. При этом результирующее математическое описание объекта обычно представляется в форме интегро-дифференциальных уравнений. Например, такая форма уравнений характерна для уравнения баланса свойств ансамбля частиц дисперсной фазы в аппарате, где эффекты взаимодействия (дробления—коалесценции) задаются соответствующими интегралами взаимодействия в дифференциальном уравнении для многомерной функции распределения частиц по физико-химическим свойствам. Другим характерным примером интегро-диффе-ренциальной формы функционального оператора объекта может служить дифференциальное уравнение, описывающее процесс диффузии или теплопереноса, свернутое по временной координате с помощью функции распределения элементов потока по времени пребывания в аппарате. [c.202]

    На первой стадии (слабые взаимодействия) надмолекулярные структуры (центры кристаллизации) формируются за счет сил Ван-дер-Ваальса. В зависимости от природы ВМС нефти и величины сил взаимодействия молекул для каждого вида ВМС образуется свой тип надмолекулярных структур, обладающих определенными физико-химическими свойствами (асфальтеновый, парафиновый и другие ассоциаты). Парафиновые надмолекулярные структуры при повышении температуры дезагрегируются полностью или подвергаются одновременно дезагрегированию и химическому разрушению. Асфальтеновые ассоциаты с повышением температуры склонны к физическому и далее к химическому агрегированию. [c.158]

    Природа физико-химических взаимодействий в промывочных жидкостях определяется действующими межатомными и молекулярными силами. Эти силы, обусловленные расположением и движением в атомах и молекулах электрических зарядов и вследствие этого имеющие электрическую природу, определяют свойства и характер взаимодействия компонентов, которые содержатся в фазах промывочных жидкостей — минералов, воды, химических реагентов, газов и др. Несмотря на единую электрическую природу, эти силы различны, а потому отличаются и связи, возникающие при их взамодействии. В настоящее время различают пять основных форм связи ионную (гетеронолярную), ковалентную (неполярную или гомеополярную), водородную, металлическую и молекулярно-поляризационную, обусловленную силами Ван-дер-Ва-альса. [c.7]

    А.Х. Мирзаджанзаде, Н.Г Бернардинер и В.М. Ентов) или физико-химическом взаимодействии ее с породой (А.Х Мирзаджанзаде, О.Ф. Кондрашев), либо наложением перечисленных явлений. Количественной характеристикой последних является фактор сопротивления, остаточный фактор сопротивления, коэффициент изоляции и ряд других показателей, определяющих снижение проницаемости кернов при фильтрации вязкоупругих жидкостей. Но однозначно выявить природу вязкоупругих аномалий по данным фильтрационных измерений достаточно сложно, хотя известный факт увеличения последних при снижении исходной проницаемости пористой среды и скорости фильтрации косвенно свидетельствует о физико-химической природе фактора сопротивления. [c.8]

    Установление природы фильтрационных аномалий безглинистых полисахаридных растворов как результата физико-химического взаимодействия с породой позволило разработать методику прогнозирования изолирующих свойств этих систем, учитывающую влияние этого фактора на кольматационные и фильтрационные процессы в приствольной области скважины. [c.32]

    Сходство внутри рассмотренной группы фосфорилсвязывающ,их белков может и не иметь общей природы. Что касается дегидрогеназ, описанных в разд. 10.4, то способ связывания (пиро)фосфорильных групп, вероятно, относится к их консервативным особенностям, поскольку эти белки, по-видимому, гомологичны (разд. 9.6). Однако для других белков этой группы способ связывания фосфорила нельзя рассматривать как черту, указывающую на гомологию, поскольку он может быть просто следствием выгодного физико-химического взаимодействия. [c.265]

    В хроматографии под селективностью понимгиот селективные физико-химические взаимодействия между анализируемыми веществами и хроматографической системой. В газовой хроматографии селективность определяется природой НФ. Типы неподвижных фаз для газовой хроматографии подробно описаны в работах Бломберга [9], Хакена [10] и Старка и сотр. [11]. Обычно селективность НФ выражают через относительное удерживание критической пары компонентов пробы  [c.18]

    Основным свойством поверхностно-активных веществ, непосредственно отражающим природу поверхностной активности и обусловливающим применение ПАВ как малых добавок, является их способность адсорбироваться на межфазной поверхности в концентрации, многократно превосходящей концентрацию в объемах граничащих фаз, и плотно заполнять поверхностный слой. На межфазной границе в результате физико-химических взаимодействий ПАВ происходит изменение природы данной границы гидрофилизация (при отмывании, при нанесении ядохимикатов, при вытеснении остаточной нефти) гидрофобизация (пряжи, ткани, частиц при флотации) оле-филизация (пигментов и наполнителей породы при пуске скважины). [c.174]

    Впервые применены термодинамические и вероятностные критерии при оценке природы фаз, кристаллизирующихся из расплавов. Успешно развИ ваются методы построения диаграмм состояния с применением ЭВМ, основанные на построении аналоговых математических моделей изучаемой системы. Впервые предложены и применены в физико-химическом анализе матрицы взаимных пар солей, представляющие собой запись в табличной форме химического или физико-химического взаимодействия солей во взаимных системах. Наличие или отсутствие того или иного свойства (направление реакций обмена, наличие нонвариантных точек и пр.) кодируется в них индексами 1 (наличие) или О (отсутствие). [c.7]

    Все физико-химические взаимодействия между биомолекулами осуществляются в соответствии с принципом структурной комплементарности с шошты молекулярное узнавание , принцип ключ замок или рука—перчатка ), основанным на зависимости реакционной способности веществ от их пространственной конфигурации. Сложная структурная организация биомолекул объясняет уникальные свойства, присущие живой природе в отличие от неживой материи. [c.28]

    В соответствии с современными физико — химическими пред — стазлениями о сущности катализа, катализатор и реагирующие веп(ества следует рассматривать как единую каталитическую реакционную систему, в которой химические превращения испытывают не только реактанты под действием катализатора, но и катализатор при взаимодействии с реагентами. В результате такого взаимного воздействия в реакционной системе устанавливается стационарный состав поверхности катализатора, определяющий его каталитическую активность. Отсюда следует, что катализатор — не просто место осуществления реакции, а непосредственный участник химического взаимодействия, и его каталитическая активность обусловливается химической природой катализатора и его химическим сродством к реактантам. [c.87]

    В сотрудничестве с Герцфельдом Гайтлер выполнил теоретическую работу, посвященную изучению давления паров и теплот смешения в бинарных жидких системах по методу Ван-дер-Ваальса. Его диссертация была посвящена теории концентрированных растворов. В ней он предложил рассматривать жидкие бинарные системы неэлектролит— растворитель как пространственную решетку кубической симметрии. На осрове своей модели Гайтлер рассчитал методами статистической физики наиболее вероятное расположение молекул растворителя около молекулы растворенного вещества. Допуская, что теплота смешения ие зависит от температуры и что все парциальные моляльные теплоты примерно одинаковы, он получил уравнение состояния системы, по которому можно было определить некоторые ее свойства. Сопоставление с экспериментом показало, что теория дает вполне удовлетворительные результаты. По-видимому, исследование растворов неэлектролитов методами статистической термодинамики привело Гайтлера (не без влияния Герцфельда) к вопросу о природе химических взаимодействий в них. [c.154]

    Почти все известные присадки, являясь поверхностно-активны-ми веществами (ПАВ), концентрируются на поверхности раздела фаз, образуя тончайщие адсорбционные слои, резко изменяющие молекулярную природу и свойства поверхностей. При этом, во-первых, изменяется кинетика процессов перехода веществ через поверхность раздела фаз, во-вторых, что не менее важно, изменяются условия молекулярного взаимодействия соприкасающихся фаз. Добавлением малых количеств ПАВ можно изменить ход физико-химических процессов и условия взаимодействия фаз. Впервые для отделения жидкой фазы (масла) от твердой (парафина) была использована запатентованная Г. И. Девисом депрес-сорная присадка парафлоу 1[88]. В сороковых годах многими работами было подтверждено, что добавление депрессорных присадок улучщает показатели процесса депарафинизации [89, 90], однако в промышленность эта идея внедрена не была. За последние 10—15 лет интерес к использованию присадок в процессе депарафинизации масел значительно возрос, о чем свидетельствуют многочисленные публикации и патентные данные >[35, 42, 45, 46, 91, 92 и др.]. Остановимся только на последних работах. [c.167]

    Из анализа иерархической структуры эффектов ФХС ( 1.1) видно, что характерной особенностью исследуемой системы является ее двойственная детерминированно-стохастическая природа. К важнейпшм стохастическим особенностям этой системы следует отнести характер распределения элементов фаз по времени пребывания в аппарате, вид распределений включений дисперсных фаз по размерам, эффекты механического взаимодействия между фазами, приводящие к столкновению, дроблению и коалесценции (агломерации) включений, характер распределения включений по глубине химического превращения, вязкости, плотности и другим физико-химическим свойствам. [c.67]

    Конечная цель системного анализа на уровне отдельного химико-технологического процесса — построение функционального оператора (модуля химико-технологического процесса), который используется в дальнейшем для решения задач оптимизации, управления, проектирования процессов, а также для решения задач выс-щих ступеней иерархии химического производства. Необходимость применения системного подхода особенно остро стоит при анализе сложных ФХС, т. е. систем, для которых характерны многообразие явлений, совмещенность и взаимодействие явлений различной физико-химической природы. К таким системам можно отнести процессы массовой кристаллизации из растворов и газовой фазы. [c.3]

    Очистка предполагает удаление зафязнений с поверхности до определенного уровня чистоты. Для этого используют механический, физический, химический, физико-химический и химикотермический способы. Чтобы ускорить очистку, применяют разные способы интенсификации повышение температуры и давления очищающей среды, вибрационную активацию очищающей среды и пр. Скорость очистки находят экспериментально при определенных условиях. На нее влияют следующие факторы природа зафязнения (химический состав, прочностные и реологические свойства) количество зафязнений (начальная зафязненность поверхности, количество зафязнений, допустимое на поверхности после очистки, равномерность распределения по поверхности остаточной зафязненности) вид поверхности (материал, шероховатость, размеры и конфигурация) очищающая среда (состав, концентрация, температура) характер и параметры взаимодействия очищающей среды с поверхностью (скорость и размер потока, обусловленные конструкцией моечной машины). [c.27]

    Структура граничных слоев при прочих равных условиях обусловлена физико-химическими свойствами образующих ее веществ. По А. И. Китайгородскому, в межмолекулярных взаимодействиях основную роль играет форма молекул, иначе говоря, их локальные микрополя, а не результирующие силовые направления. Межмолекулярные силы в полимолекулярных граничных слоях в большинстве случаев имеют физическую природу. Среди межмолекулярных связей физической природы особый интерес представляют водородные связи, энергия которых сравнительно велика ( 10 ккал/моль). Этот вид связи составляет одну из неотъемлемых характеристик межмолекулярного взаимодействия молекул углеводородов. Такая связь наблюдается во всех агрегатных состояниях она определяет многочисленные виды ассоциаций молекул. [c.68]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]

    Нефтяные остатки представляют собой сложные углеводородные системы, различающиеся групповым и фракционным составом, степенью дисперсности и уровнем межфазных взаимодействий дисперсной фазы и дисперсионной среды [1]. Регулирование основных параметров нефтяных дисперсных систем (НДС) с помощью воздействия силовых полей и добавок разнообразной природы оказывается эффективным способом воздействия на поведение НДС в тех1Юлогических процессах и свойства получаемых при этом продуктов [2]. Для многих асфальтеносодержащих систем характерны полизкстремальные зависимости физико-химических свойств от интенсивности воздействия внешних факторов, что является следствием изменения дисперсного состояния и перестройки структурных единиц НДС. Кроме того, дисперсность НДС существенно зависит не только от степени воздействия внешних факторов, но и от состава дисперсионной среды [3]. [c.122]

    Физико-химические свойства нефтей и их фракций являются функцией их химического состава и структуры отдельных компонентов, а также их сложного внутреннего строения, обусловленного силами межмолекулярного взаимодействия. Поскольку нефть и ее фракции состоят из большого числа разнообразных по химической природе веществ, различающихся количественно и качественно, свойства нефтепродуктов представляют собой усредненные характеристики, и показатели их непостоянны как для различных и фрякпиы таи- и для одинзковых фрзкций ИЗ разных неф- [c.17]


Смотреть страницы где упоминается термин Физико-химическое взаимодействие природа: [c.8]    [c.8]    [c.128]    [c.55]    [c.213]    [c.4]    [c.135]    [c.227]    [c.70]    [c.27]   
Адгезия жидкости и смачивания (1974) -- [ c.248 ]




ПОИСК





Смотрите так же термины и статьи:

РНК химическая природа



© 2025 chem21.info Реклама на сайте