Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сварные соединения термообработка

    Хорошая. Сварные соединения высокого качества получают по обычной технологии без подогрева и без последующей термической обработки. Термообработка для снятия внутренних напряжений назначается из условий толщины проката. [c.166]

    Сталь удовлетворительно обрабатывается резанием. Она хорошо сваривается и имеет высокие прочностные свойства в сварном соединении. Термообработки изделий после сварки не требуется. Однако для снятия напряжения после сварки и штамповки, а также для снятия наклепа после холодной деформации сложные узлы рекомендуется подвергать нормализации с температуры 900° С [c.75]


    Иногда бывает необходимо после сварки термически обрабатывать сварное соединение. Термообработка заключается в нагреве сварного соединения и околошовной зоны до высоких температур (650—950°С), выдержке при этой температуре в течение некоторого времени и медленном охлаждении. Например, сварные стыки паропроводов диаметром более 100 мм и толщиной [c.135]

    Для изготовления сосудов применяют материалы соответствующих стандартов, обладающие хорошей свариваемостью, прочностью и пластическими характеристиками, которые обеспечивают надежность и долговечность эксплуатации. Стальные отливки, применяемые для изготовления сосудов, проходят термообработку, а отливки из легированных сталей подвергают еще и металлографическим испытаниям. Сварные швы сосудов могут быть только стыковыми сварные соединения в тавр допускаются только для при-ва-рки плоских днищ. Сварку сосудов и их элементов выполняют сварщики, прошедшие специальное обучение и имеющие соответствующие удостоверения. [c.316]

Рис. 105. Распределение твердости HVa и разности электродных потенциалов Аф в сварном соединении на стали 17Г 2СФ при различных видах термообработки Рис. 105. Распределение твердости HVa и разности электродных потенциалов Аф в <a href="/info/71819">сварном соединении</a> на стали 17Г 2СФ при <a href="/info/100786">различных видах</a> термообработки
    При работе аппаратов в средах, вызывающих коррозионное растрескивание, применять не рекомендуется. Прн сварке требуются специальные меры (подогрев, термообработка и др.). Более низкие температуры работы сварных соединений допускаются прн применении специальной технологии сварки и термообработки, согласованной с головным институтом отрасли.  [c.77]

    При проведении местной термообработки необходимо обеспечить равномерный нагрев и охлаждение всего сварного соединения и прилегающей к нему зоны основного металла на ширину, в 2—3 раза превышающую толщину стенки корпуса, считая от края разделки. [c.370]

    Основными причинами разрушения трубопровода на 96 и 123-м км трассы признаны неудовлетворительные физико-механические характеристики металла труб и сварных соединений (пониженные прочность и ударная вязкость). Механические свойства оказались низкими из-за сильного загрязнения металла неметаллическими включениями, повышенного содержания в металле труб углерода, марганца и ванадия, а также вследствие отсутствия термообработки сварных соединений. [c.58]


    Особые требования к технологии сварки следует предъявлять при изготовлении изделий из закаливающихся сталей. Особенностью таких сварных соединений является наличие в них твердых (хрупких) прослоек, уменьшение размеров которых способствует повышению работоспособности элементов аппаратуры. Наиболее радикальный способ повышения работоспособности сварных соединений из закаливающихся сталей - подогрев при сварке с последующей термообработкой. [c.29]

    Контрольное сварное соединение должно воспроизводить одно из стыковых сварных соединений аппарата (сборочной единицы, детали), определяющих его прочность, и выполняться одновременно с контролируемым аппаратом (сборочной единицей, деталью) с применением одинаковых исходных материалов, формы разделки кромок, сборочных размеров, методов и режимов сварки, режима термообработки. [c.424]

    При автоматической, полуавтоматической или электрошлаковой сварке аппаратов (сборочных единиц, деталей) на каждый аппарат (сборочную единицу, деталь) необходимо сваривать одно контрольное сварное соединение (на каждый вид применяемого процесса) с использованием одинаковых присадочных материалов и режима термообработки. [c.424]

    При изготовлении однотипных аппаратов допускается на каждый вид сварки вьшолнять по одному контрольному сварному соединению на всю партию аппаратов (сборочных единиц, деталей) при условии контроля стыковых сварных соединений, определяющих прочность аппарата, радиографическим или ультразвуковым методом в объеме 100%. В одну партию аппаратов (сборочных единиц, деталей) следует объединять аппараты (сборочные еди- ницы, детали) одного вида, из листового материала одного класса сталей, имеющие одинаковые формы разделки кромок, выполненные по единому (типовому) технологическому процессу и подлежащие термообработке по одному режиму, если цикл их изготовления по сборочно-сва-рочным работам, термообработке и контрольным операциям ие превышает 3 месяцев. [c.424]

    Термообработка контрольных сварных соединений должна выполняться одновременно с аппаратом (сборочной единицей, деталью). Допускается термообработку контрольных сварных соединений производить отдельно от аппарата(сборочной единицы, детали) при условии применения одинаковых метода и режима термообработки. [c.424]

    Наличие существенного различия в свойствах различных зон сварного соединения на трубах из стали 17Г2СФ в состоянии поставки подтверждается также и результатами исследования уровня микроискажений кристаллической решетки. Определение уровня микроискажений производили на рентгеновском дифрактометре ДРОН-2,0 в отфильтрованном СоАГа-излучении кобальтового анода по методу Вильсона. Снимали 12%-ную линию а-железа, находящуюся в прецизионной области углов дифракции в режиме постоянного времени. Результаты исследования, приведенные в табл. 7, показывают, что термообработка приводит к уменьшению разницы в уровнях микроискажений шва и основного металла и, следовательно, к уменьшению токов активного растворения. [c.233]

    Основы расчета даны в развитии нормативных документов, регламентирующих методы определения статической прочности применительно к сталям и условиям работы нефтегазохимического оборудования. Расчеты предусматривают возможность обеспечения равнопрочности сварных соединений основному металлу конструкций путем рационального выбора технологии изготовления элементов нефтегазохимического оборудования (режимов сварки, термообработки и т.п.) и сварочных материалов. [c.207]

    Для установления возможности создания благоприятных физико-механических свойств металла и повышения работоспособности сварного соединения проводили исследование влияния различных вариантов сочетаний видов сварки, сварочных материалов и свариваемых сталей, технологических режимов сварки, термообработки, дополнительных напряжений на распределение электродных потенциалов в зонах сварного соединения, а также на изменение микро- и макронапряжений, структуру, микротвердость. [c.237]

    Сущность технологических методов повышения работоспособности сварных соединений заключается в снижении структурной и механической неоднородности. Регулирование режимами сварки позволяет в той или иной степени изменять свойства и размеры характерных и паяных соединений. Термообработкой можно изменять напряженное состояние. [c.277]

    Технологические методы повышения работоспособности сварных соединений основаны на регулировании термодеформационных циклов сварки, снятии остаточных напряжений и др. Сущность технологических методов заключается в снижении степени структурно-механической и геометрической неоднородности. Регулирование режимов сварки позволяет в той или иной степени изменять свойства и размеры характерных участков сварных соединений. Термообработкой можно изменять исходное напряженное состояние. [c.27]


    Последующая термическая обработка является дорогостоящей операцией. Необходимы стационарные печи с большим объемом камеры. Местная термообработка можст привести к появлению широких участков разупрочнения. Таким образом, в некоторых случаях применение последующей термообработки становится невозможным. Необходимость в ограничении во времени между сваркой и термической обработкой (времени вьшеживания) сварных соединений является серьезным сдерживающим фактором применения такой технологии. Это время 1фи сварке с подогревом составляет не более 4-8 часов. При сварке толстостенных трубопроводов термообработка должна 1фово-диться сразу после окончания сварки. [c.224]

Рис. 107. Зависимость [распределения локальных свойств металла в сварном соединении от вида электрода и термообработки. Электроды УОНИ 13/45 1, в. и, 2 — исходное состояние 3, 4, 9, 10, 13, 14 — после отжига. Автоматическая сварка 2 — исходное состояние 3, 4 — после отжига. Электроды МР-3 7 — исходное состоянне 5, 6 — после отжига, и Оц — макро- Рис. 107. Зависимость [<a href="/info/315170">распределения локальных</a> <a href="/info/16579">свойств металла</a> в <a href="/info/71819">сварном соединении</a> от <a href="/info/583733">вида электрода</a> и термообработки. Электроды УОНИ 13/45 1, в. и, 2 — <a href="/info/575290">исходное состояние</a> 3, 4, 9, 10, 13, 14 — <a href="/info/677295">после отжига</a>. <a href="/info/403321">Автоматическая сварка</a> 2 — <a href="/info/575290">исходное состояние</a> 3, 4 — <a href="/info/677295">после отжига</a>. Электроды МР-3 7 — <a href="/info/575290">исходное состоянне</a> 5, 6 — <a href="/info/677295">после отжига</a>, и Оц — макро-
    Предварительный контроль предусматривает проверку качества сварочных материалов, состояния сварочного оборудования. Пооперационный контроль включает проверку качества подготовки и сборки деталей под сварку, соблюдения режимов предварительного подогрева, режимов сварки и порядка выполнения многослойных швов, проведения термообработки после сварки. Контролю внешним осмотром подвергают сварной шов и прилегающую к нему зону шириной 20 мм по обе стороны от шва по всей протяженности сварного соединения. При внешнем осмотре проверяют качество поверхности сварных соединений. В сварных швах не допускаются следующие виды наружных дефектов трещины, подрезы и резкие переходы от основного металла к металлу шва, прожоги, наплавы, незаплав- [c.238]

    Условие выполнения сварных соединений с различным сочетанием сва-рочных проволок определяется технологией, согласованной с головным инсти-тутол отрасли. Прн сварке требуются специальные меры (подогрев, термообработка и др.).  [c.82]

    Контроль качества сварных соединений производится как непосредственно так и контрольных образцов этих соединений, выполненных одним и тем же свар щиком одновременно с изготовлением контролируемых изделий, с применением тех же исходных материалов, разделки кромок, способов и режимов сварки и термообработки по СТ СЭВ 800—77 и ОСТ 26-291—79. [c.96]

    В 1974 г. произошло разрушение трубопровода 0114 мм обвязки одной из скважин УКПГ-б ОНГКМ. В области фланца образовалась сквозная трещина, находившаяся на расстоянии 15-23 мм от оси сварного шва. Структура металла фланца в зоне образования и развития трещины состояла из грубопластинчатого перлита. Методами электронной фрактографии установлено, что металл фланца был сильно загрязнен неметаллическими включениями, по которым распространялось разрушение, имевшее преимущественно хрупкий характер. Причиной возникновения этого повреждения явилось наличие в металле фланца большого количества неметаллических включений типа оксисульфидов и непроваров глубиной до 2 мм общей протяженностью около 50 мм в корне сварного шва. Кроме того, отсутствие термообработки сварного соединения способствовало возникновению в околошовной зоне структуры троостита, не обладающей достаточной стойкостью к сероводородному растрескиванию, и высокого уровня остаточных напряжений. [c.27]

    После 18 лет эксплуатации произошло разрушение (длина трещины 280 мм) кольцевого сварного соединения шлейфового трубопровода 0219x12 мм (сталь 12Х1МФ) скважины № 6026 (рис. 8а). В сварном соединении в области очага разрушения обнаружены поры, шлаковые включения, подрезы и непровар до 5 мм (рис. 86), которые инициировали сероводородное растрескивание металла стыка. Аналогичное разрушение сварного стыка шлейфового трубопровода скважины № 183 произошло после 15 лет эксплуатации (рис. 8в). Трещина в сварном шве длиной 210 мм образовалась от непровара глубиной 4 мм. Склонность металла шва к сероводородному растрескиванию обусловлена также его повышенной твердостью (293 НВ), что свидетельствует об отсутствии термообработки стыка. [c.29]

    Распределение микротвердости до и после наложения дополнительного валика показано на рис. 5.2. Как видно из полученных результатов значения микротвердости образцов после наложения ремонтного шва уменьшились примерно на 50 единиц. Эти дефекты указывают о снятии заколочных структур, которые были в сварном соединении до ремонта. Вероятно это объясняется своеобразной термообработкой, которая происходит при наложении ремонтного шва. Установлено, что структура основного металла имеет строчечный характер (рис. 5.3,а). Это указывает, что листовой материал был получен холодной прокаткой. На линии сплавления (рис. 5.3,6) наблюдаются крупные подплавленные зерна. Структура сварного шва до ремонта имеет дендрантную структуру (см. рис. 5.3,в). [c.98]

    Наиболее значительную роль в повреждаемости оборудования при вьшолнении строительно-монтажных работ ифают монтажные сварочные работы. Качество вьшолнения сварных швов по месту монтажа обычно ниже качества сварных соединений, вьшолнсешых в заводских условиях. В результате монтажные швы часто становятся одним из источников, инициирующих трешиноподобные дефекты. Для снятия напряжений, появившихся в результате сварки, детали должны подвергаться термообработке полностью или в зоне сварного шва. Недостаточная техническая культура выполнения монтажных работ может привести к появлению отдельных локальных деформаций элементов конструкций. Местные пластические де-формашш могут послужить причиной дальнейшего перенапряжения конструкции и ее разрушения. [c.88]

    Повышение коррозионной стойкости и долговечности сварных соединений в условиях малоциклов ой коррозионной усталости может быть достигнуто, в частности, уменьшением или устранением электрохимической гетерогенности путем термообработки. О некотором влиянии термообработки можно судить по результатам, приведенным иа рис. 99 наружный шов подвергается более ин-тенсивному растворению, чем внутренний, который претерпел нагрев при наложении наружного шва. [c.232]

    Таким образом, путем оптимизации технологии сварки, сочетания сварочных материалов и режимов термообработки можно управлять электрохимической гетерогенностью и стойкостью сварных соединений трубопроводов с целью получения равностойкого (с основным металлом) сварного соединения. При достижении равностойкости сварного соединения в зоне шва снижается или полностью подавляется возможность локальных разрушений и локальное значение скорости коррозии шва выравнивается со значением скорости общей коррозии основного металла. [c.242]

    Как следует из приведенных данных, в процессе эксплуатации в результате действия нагрузок происходило увеличение разности потенциалов между швом и основным металлом, что согласовывалось с лабораторными результатами исследований. Однако у сварных соединений, выполненных электродами марки УОНИ-13/55, происходило разблагороживание шва, которое сопровождалось усилением его растворения. У сварных соединений, выполненных электродами марки МР-3, небольшое увеличение разности потенциалов вызывало некоторое увеличение общей потери массы, распределенной, однако, на большую площадь основного металла. В таких условиях шов этого сварного соединения был защищен. Такое изменение поведения во времени сварных соединений, выполненных электродами с рутиловым покрытием, может быть объяснено положительным влиянием рутила на структуру металла шва в связи с переходом ее в более равновесное состояние. При этом эксплуатационные нагрузки не вызывали упрочнения металла, не имеющего в твердом растворе кремния. У сварных соединений, выполненных электродами марки УОНИ-13/55, наоборот, происходило преимущественное локальное упрочнение металла шва и разблагороживание потенциала. У всех сварных соединений после термообработки гетерогенность практически выравнивалась и мало изменялась во времени. [c.243]

    В целом высокопрочные аустенитные нержавеющие стали обладают очень высокой стойкостью в морских атмосферах. Высокая прочность этих сплавов достигается путем холодной деформаци , после чего обычно следует термообработка, частично восстанавливающая пластичность. После холодной деформации и термообработки аустенитные нержавеющие сталп обладают очень хорошей стойкостью в агрессивных морских атмосферах. Однако в местах сварных соединений стойкость теряется. Наблюдается также коррозия этих сталей прп высоких температурах, в частности при испытаниях в кипящем 42%-ном растворе МйС12, а также в горячей морской воде [12]. О коррозии при комнатных температурах сообщалось очень редко. После термообработки на твердый раствор аустенитные нерл<авеющие стали не подверл<ены кор- [c.66]

    Сталь XI7 обладает-удовлетворительной свариваемостью. В качестве присадочного материала применяют электроды из сташ Х18Н10Б (и ей подобных) с обмазкой марки ЦЛ-11. Перед сваркой рекомендуется подогрев кромок до 200-300 °С. Сварные соединения из стали XI7 в зоне термического влияния имеют низкую стойкость к МКК и общей коррозии. Для ее повышения рекомендуется проводить дополнительный отпуск изделия или детали либо местный нагрев сварного соединения до температур 740-800 С с последующим охлаждением на воздухе. Если термообработка сварной конструкции затруднительна, ее изготавливают клепаной. [c.17]


Смотреть страницы где упоминается термин Сварные соединения термообработка: [c.249]    [c.262]    [c.138]    [c.31]    [c.37]    [c.45]    [c.55]    [c.65]    [c.361]    [c.369]    [c.418]    [c.146]    [c.275]    [c.135]    [c.121]    [c.233]    [c.143]    [c.302]    [c.559]   
Оборудование нефтеперерабатывающих заводов и его эксплуатация Изд2 (1984) -- [ c.90 , c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Сварные швы

Термообработка сварных соединений трубопроводов

Швы сварные термообработка



© 2025 chem21.info Реклама на сайте