Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосомы механизм репликации

    Согласно современным представлениям, репликация ДНК протекает по механизму, приведенному в уравнении (15-3). По мере того как ДНК раскручивается в репликационной вилке, вдоль родительских цепей происходит синтез новых кусков ДНК. Возникает важный вопрос происходит ли репликация только в одном направлении или же в начальной точке, с которой начинается транскрипция, образуются две вилки, которые далее перемещаются в противоположных направлениях вокруг хромосомы Ответить на этот вопрос удалось в результате сочетания генетических методов и электронной микроскопии. [c.272]


Рис. 2,17. Репликация кольцевой бактериальной хромосомы и деление бактериальной клетки. В этой схеме предполагается однонаправленный механизм репликации ДНК, т.е. механизм с участием только одной репликативной вилки. Рис. 2,17. <a href="/info/32698">Репликация</a> кольцевой <a href="/info/32685">бактериальной хромосомы</a> и деление <a href="/info/32980">бактериальной клетки</a>. В этой схеме предполагается однонаправленный <a href="/info/611103">механизм репликации</a> ДНК, т.е. механизм с участием только одной <a href="/info/33376">репликативной</a> вилки.
    Оказалось, однако, что синтез обеих новых цепей может идти не только в одном направлении, но и сразу в обе стороны от точки инициации. Такой механизм предполагает раскручивание двойной спирали сразу в двух местах-с образованием двух разветвлений реплика-ционных вилок на одной молекуле ДНК. Удвоение хромосомы у Е. соИ занимает примерно 40 мин. Между тем эта бактерия при благоприятных условиях делится со временем удвоения порядка всего лишь 20 мин. Этот факт можно объяснить тем, что обе дочерние хромосомы, по имеющимся данным, начинают новый цикл деления еще до того, как заканчивается предыдущий. О механизме репликаций ДНК получено гораздо больше детальных сведений, чем можно было здесь изложить. Между механизмами репликации фагов, плазмид и бактериальных хромосом существуют значительные различия. Для углубленного изучения этих вопросов следует обратиться к литературе по молекулярной биологии. [c.40]

    ДНК Е. oli реплицируется полуконсервативным способом, так что каждая дочерняя двойная спираль состоит из одной родительской и одной новообразованной цепи. Кольцевая бактериальная хромосома реплицируется в двух направлениях из одной и той же точки начала репликации. Некоторые вирусные ДНК реплицируются по механизму катящегося кольца . [c.922]

    Деление молекулы ДНК (репликация) происходит по полу-консервативному механизму и в норме всегда предшествует делению клетки. С помощью электронного микроскопа установлено, что репликация ДНК начинается в точке прикрепления кольцевой хромосомы к ЦПМ, где локализован ферментативный аппарат, ответственный за репликацию. Часто можно обнаружить, что контакт ДНК с ЦПМ осуществляется посредством мезосом. Репликация, начавшаяся в точке прикрепления, идет затем в двух противоположных направлениях, образуя характерные для кольцевой хромосомы промежуточные структуры (рис. 17). Возникающие дочерние хромосомы остаются прикрепленными к мембране. Репликация молекул ДНК происходит параллельно с синтезом [c.57]

    Инициация репликации неизбежно влечет за собой дальнейшее деление прокариотической и эукариотической клетки. С этой точки зрения число потомков клетки определяется серией принимаемых ею решений, инициировать или не инициировать репликацию ДНК. Если репликация началась, то до ее завершения последующее деление клетки не сможет произойти. Именно завершение репликации, по-видимому, служит сигналом для клеточного деления. Дуплицированные геномы сегрегируют по одному в каждую дочернюю клетку. У эукариот это происходит в процессе митоза, у прокариот используется какой-то другой механизм. В обоих случаях единицей сегрегации является хромосома. [c.396]


    Цитируемые авторы в основном уделяют внимание химическому составу клетки, связывая механизм репликации хромосомы с синтезом белка и клеточных компонентов. Исследователи судят об этом процессе по таким показателям, как соотношение массы клетки с числом начальных репликационных точек, отношение белок/клетка, белок/ДНК, белок/общая РНК, белок/рибосомальная ДНК и т. д. [c.106]

    Однако нужен еще какой-то механизм, который бы гарантировал, что активатор 8-фазы будет присутствовать до тех пор, пока не завершится репликация всей ДНК. Как мы видели, опыты со слиянием клеток показывают, что цитоплазматический сигнал, активирующий механизм репликации ДНК в начале 8-фазы (активатор 8-фазы), исчезает к ее концу. Однако если клетку искусственно блокировать в 8-фазе ингибиторами синтеза ДНК, механизм репликации ДНК остается дееспособным и после нормального срока окончания 8-фазы, так что в случае удаления ингибитора репликация ДНК возобновляется и доводится до конца. Но-видимому, хромосома, не завершившая репликацию, каким-то образом сохраняет механизм репликации в активном состоянии. [c.401]

    Одинаковая длительность фазы S в одном случае у гаплоида и диплоида, в другом случае у диплоида и тетраплоида-это не столь уж и удивительно. Если отдельные хромосомы и области внутри хромосом реплицируются в определенном порядке, to при уменьшении вдвое или удвоении числа хромосом порядок репликации не должен изменяться. Соотношение между числом генов, ответственных за механизм репликации (кодирующих ДНК-полимеразы, геликазы, факторы инициации и т.д.), и общим количеством ДНК также сохраняется. Напротив, у разных организмов соотношение между количеством этих генов и содержанием ДНК скорее всего варьирует, и этим может объясняться корреляция, на которую указывают данные в табл. 13-1. [c.474]

    Перед каждым делением клетка должна синтезировать копии всех своих хромосом. Таким образом, делению клетки предшествует ее переход из состояния интерфазы (фазы 01) в фазу синтеза ДНК (8-фаза). В типичной клетке высших эукариот 8-фаза длится 8 часов. После ее окончания каждая хромосома представлена двумя копиями, которые продолжают оставаться соединенными в области центромер до наступления М-фазы. (см. рис. 9-35). Для удвоения хромосомы необходима репликация ее ДНК и последующая сборка на этой молекуле хромосомных белков, образующих хроматин. В гл. 5 мы обсуждали ферменты, участвующие в репликации ДНК, и строение репликационной вилки, обеспечивающей синтез (см. рис. 5-39). Переход клетки в 8-фазу будет рассмотрен в гл. 13 как часть более общей проблемы контроля клеточного цикла. В данном разделе мы изложим принципы механизма репликации эукариотической хромосомы, укажем время, необходимое для этого, и, кроме того, проанализируем взаимосвязь процесса репликации и структуры хромосомы. [c.133]

    Большой интерес представляет вопрос о том, как регулируется синтез основных матриц ДНК и РНК. Некоторое подобие механизма индукции, по-видимому, функционирует и в этом случае. Удвоение (репликация) ДНК начинается лишь после того, как на особую точку хромосомы оказало действие вещество. [c.394]

    Большой интерес представляет вопрос о том, как регулируется синтез основных матриц ДНК и РНК- Некоторое подобие механизма индукции, по-видимому, функционирует и в этом случае. Удвоение (репликация) ДНК начинается лишь после того, как на особую точку хромосомы оказало действие вещество, называемое инициатором, приводящее в действие механизм гена, производящего ДНК. Точка хромосомы, в которой начался процесс репликации, носит название репликатора около этой точки удерживаются части удвоенной хромосомы до окончательного их разделения. [c.207]

    Похоже на то, что добавление теломерных повторов к концу хромосомы происходит в каждом цикле репликации (таким образом, вероятно, разрешается проблема репликации линейных молекул ДНК, обсуждающаяся в гл. 33). Некий механизм должен препятствовать чрезмерному росту концов, очевидно, удаляя часть повторов. [c.354]

    Механизм действия ДНК-полимераз эукариот подобен таковому у прокариот. Отличия в процессе репликации заключаются в следующем хромосома эукариот имеет линейную структуру, на обеих цепях расположено множество репликонов и соответствующее количество терминаторов. Линейность ДНК эукариот является причиной проблем, которых не существует у прокариот, имеющих кольцевую ДНК. В отличие от лидирующей цепи, которая реплицируется полностью, праймер, находящийся у З -конца отстающей цепи, разрушается и не реплицируется при помощи ДНК-полимераз. Для предотвращения укорачивания цепи на концах хромосомы находятся теломеры — участки нереплицируемой ДНК. На этом участке ДНК может синтезироваться праймер, и полнота репликации сохранится. Теломера состоит из большого числа повторов, например у человека ТТАГГГ. Матрицей для теломеры является РНК, а специальный фермент теломераза, представляющий собой обратную транскриптазу, присоединяет эти фрагменты к З -концу для сохранения исходных размеров хромосомы. [c.453]

    Для выяснения механизма репликации бактериальной хромосомы незаменимую роль сыграл анализ разнообразных мутантов, нарушающих репликацию ДНК. Синтез ДНК — функция жизненно важная, и мутации, инактивирующие ферменты синтеза ДНК, легальны. Поэтому, как и в других подобных случаях, были использованы условно летальные мутации, в частности температурочувствитель-ные (ts). [c.54]

    Синтез вирусной РНК начинается всегда на З -конце РНК-матрицы (т. е. с 5 -конца новой молекулы РНК) и вдет до тех пор, пока не будет достигнут 5 -конец матрицы. Никаких механизмов, которые корректировали бы синтез вирусной РНК, нет, и частота ошибок здесь примерно та же, что и при транскрипции ДНК (в среднем одна ошибка на Ю нуклеотвдов). Однако отсутствие корректирующих механизмов серьезным образом не сказывается на репликации из-за небольших размеров РНК-хромосомы вируса Геномы всех РНК-вирусов невелики в сравнении с геномами крупных ДНК-содержащих вирусов, и это является прямым следствием того, что у них механизм репликации более примитивен. [c.317]


    Как отмечалось выше, невозможность полностью реплицировать конец молекул линейных ДНК с помощью ДНК-полимеразы привела к появлению на концах эукариотических хромосом специфических последовательностей ДНК, названных теломерами Гем. разд. 9.1.2). У таких разных организмов, как простейшие, грибы, растения и млекопитающие, эти участки имеют одинаковое строение. Они состоят из многих, расположенных друг за другом повторов одной короткой последовательности, которая содержит блок G-нуклеотидов (рис. 9-59, А). G-богатая теломерная последовательность всегда расположена на З -конце молекулы ДНК и, по-видимому, складывается в специальную структуру, которая защищает конец хромосомы. Предполагаемый механизм репликации ДНК теломеры ресничного простейшего Tetrahymena приведен на рис. 9-59, Б. [c.138]

    Возможно, что за этот эффект ответственны сами репликационные вилки Как мы видели в гл. 9 (разд. 9.3.1), эти вилки существуют парами две вилки одной пары движутся в противоположных направлениях от общей начальной точки, и каждая из них прекращает свое существование только тогда, когда она доходит до конца хромосомы или сталкивается с вилкой, движущейся ей навстречу. Таким образом, если хромосома начала репликацию, то будет существовать по крайней мере одна репликационная вилка до тех пор, пока вся хромосома не удвоится полностью. Возможно, что каким-то непонятным образом такая вилка обеспечивает дополнительную выработку активатора 8-фазы, эффективно катализирующего образование новых вилок в других участках ДНК В самом деле, инициация первой пары репликапионных вилок могла бы служить пусковым механизмом для начала 8-фазы, действующим по принципу всё или ничего . Такое одиночное событие инициации зависело бы от редкого случайного столкновения между стартовой последовательностью ДНК и молекулой инициатора, присутствующего в низкой концентрации. Действительно, разброс моментов перехода 01 8 во времени носит случайный характер, что согласуется с этим предположением (разд. 13.3.3). [c.401]

    Будучи интегрированной с геномом клетки-хозяина, ДНК фага X сохраняется в скрытом состоянии (в виде профаха) до тех пор, пока не будет подвержена активации в результате воздействия на лизогенную клетку тех или иных ДНК-повреждаюших агентов. В ответ на такое воздействие профаг индуцируется — начинается транскрипция и трансляция фаговых генов, необходимых для вырезания фаговой ДНК из хозяйской хромосомы, ее репликации, упаковки в белковый капсид и клеточного лизиса. Это развитие запускается с помощью механизма, подобного триггерному, что соответствует варианту С на рис. 41.1. Это означает, что после акта индукции профата обратное развитие становится невозможным процесс протекает вплоть до клеточного лизиса и высвобождения новых фаговых част иц. Переключение пути развития с лизоген-ного (состояние профага) на литический (вирулентный фаг) прекрасно изучено на молекулярном и генетическом уровнях и будет далее представлено в виде парадигмы. [c.114]

    Прежде чем перейти к механизму репликации ДНК, представляюшему собой сложный ферментативный процесс, рассмотрим некоторые свойства ДНК. Поразительная особенность молекул ДНК, встре-чаюшихся в природе,-их необычайная длина. Хромосома Е. соИ представляет собой единую молекулу двухспиральной ДНК, содержащей 4 мт. пар оснований. Масса этой молекулы ДНК 2,6 10 Да. Она имеет крайне асимметричную форму, ее контурная длина 14 10 А, а диаметр 20 А. Контурная длина (1,4 мм) этой молекулы ДНК соответствует размерам макрос коп и - [c.18]

    Изучение структур геномов различных организмов поначалу создало представление о незыблемости локализации тех или иных генов в хромосомах. Это представление было пересмотрено после открытия Б. Мак Клинток, которая в опытах с кукурузой показала, что гены могут перемещаться в пределах генома и влиять на механизмы экспрессии. В дальнейшем было установлено, что это явление характерно для многих эукариотических и прокариотических клеток. Транспозон Е. соИ представляет собой олигонуклеотид, включающий в себя ген фермента транспозазы, ответственной за перемещение транспозона, а также короткие концевые нуклеотидные последовательности. Транспозоны эукариотических клеток гораздо больше и включают в себя набор различных генов. Внутригеномное перемещение и встраивание транспозонов требует разрыва и последующего сращивания цепи ДНК. Репликация транспозона в одном сайте цепи, а затем перемещение и репликация в другом создают благоприятные возможности для дальнейших гомологичных рекомбинаций в клетке. Следует отметить, что транспозоны, встраиваясь в случайные сайты хромо- [c.456]

    Ммекулярный механизм транспозиции может быть различным у разных мобильных элементов, поэто.му лучше всего рассмотреть его на конкретных примерах. Достаточно изучен в этом отношении бактериофаг Ми, являющийся, по сути дела, необычным транспозо-ном. Этот умеренный бактериофаг встраивается в произвольный, участок хро.чосомы бактерии-хозяина. Если происходит индукция профага и начинается его вегетативное развитие, то он размножается, не вырезаясь из хромосомы, за счет повторных актов репликативной транспозиции. Вырезание фаговой ДНК из бактериальной происходит лишь при упаковке в фаговые частицы, когда репликация уже прошла. При репликации фага Л и транспозиция происходит с очень высокой частотой, поэтому именно эта система изучена лучше других. [c.115]

    С механизмом клеточной дифференцировки связан интересный вопрос сохраняется ли на уровне структуры хроматина память об активном или неактивном состоянии гена при клеточном делении и транскрипции При клеточном делении хроматин, видимо, сохраняет особенности своей структуры, например гиперчувстви-тельные участки в хроматине некоторых генов сохраняются в метафазных хромосомах в тех же местах, что и в интерфазном хроматине. Очевидно, это определяется тем, что регуляторные белки, связанные с промоторными участками генов, ассоциированы с ДНК и в составе метафазной хромосомы. Однако судьба регуляторных белков в процессе репликации ДНК неизвестна. [c.258]

    Механизм действия ДНК-полимеразы I, описываемый уравнением (15-2), обеспечивает лишь прямой путь образования комплементарной цепи ДНК каким образом может осуществляться копирование двухцепочечной ДНК, с помощью этого механизма нельзя объяснить. Одна из проблем состоит в том, что для копирования двухцепочечной ДНК две цепи должны расплестись и отделиться одна от другой. Если расплетание цепей и репликация происходят лишь в одной репликационной вилке, как это следует нз экспериментов Кернса, то для того, чтобы хромосома Е. oli могла полностью реплицироваться за 20 мин, вся молекула должна раскручиваться со скоростью 300 оборотов в 1 с. Кроме того, для осуществления процесса репликации в хромосоме должно быть образование типа шарнира (или, по крайней мере, разрыв в одной из цепей) [уравнение (15-3)]. [c.197]

    Понятно, что наряду с механизмами, регулирующими наличие предшественников ДНК (гл. X), клетка должна иметь приспособления, специфически регулирующие скорость и ритм процесса репликации. Некоторый прогресс был достигнут нри изучении этих явлений на бактериальных системах, на фагах и других бактериальных энисомах. (Термин эписома употребляется для обозначения необязательных генетических структур, содержащих ДНК, которые могут существовать в бактериальной клетке или как автономная единица, или как компонент, объединенный с бактериальной хромосомой.) [c.197]

    Кроме изменения морфологии и физиолого-биохимических процессов, в зависимости от фазы роста культуры наблюдается изменение содержания ДНК и нуклеоидов в микробных клетках. Исследователи уделяют особое внимание вопросам изменения нуклеиновых кислот и процессу деления нуклеоидов. На периодических культурах были получены сведения, раскрывающие механизмы взаимосвязи репликации ДНК и клеточного деления [12, 76, 96]. Предложена модель репликации хромосомы, согласно которой процесс репликации связан со сте-почно-мембранным комплексом [12, 76, 81, 101]. Имеются предположения, что репликация внехромосомных элементов (эписом п плазмид) также связана с участками цитоплазматической мембраны [99]. За последние годы появились наблюдения, указывающие на возможную независимость репликации ДНК от роста клеточной стенки [89]. [c.97]

    Более поздние электронно-микроскопические исследования интерфазных ядер показали, что в действительности вепрерывность хромосом сохраняется и что ДНК просто расправляется из плотной матафазной упаковки и заполняет весь объем ядра в виде ультратонких нитей диаметром 200—300 А вид этих нитей позволяет предположить, что это отдельные двойные спирали ДНК, покрытые гистоновой оболочкой. В интерфазе ДНК метаболически активна и служит матрицей для своей собственной репликации в ходе подготовки к следующему клеточному делению, а также ДЛЯ синтеза информационных РНК-Таким образом, интерфазная хромосома аналогична вегетативной молекуле ДНК фага, принимающей участие в его внутриклеточном развитии. Молекулярные механизмы, обеспечивающие периодическую конденсацию и расправление хромосомной ДНК, пока что не выяснены, однако представляется вероятным, что в их основе лежат взаимодействия типа ДНК — гистон и гистон — гистон. [c.499]

    Как показывает радиоавтограф (фиг. 243, Б), полученный спустя один цикл репликации после включения метки, между двумя сестринскими хроматидами произошел реципрокный обмен ДНК- Видно, что, в тО) время как концевой участок одной из двух сестринских хромосом содержит метку, гомологичный участок второй хромосомы ее не содержит в следующем же участке вторая сестринская хромосома содержит, а первая не содержит метки. Такой обмен между сестринскими хромосомами можно легко объяснить механизмом обмена между дочерними цепями ДНК,, рассмотренным в гл. XV в связи с пострепликационной репарацией повреждений ДНК, возникающих при действии ультрафиолета на Е. oli. Как предполагал в 1963 г. Уайтхауз, после репликации молекулы ДНК родительской хромосомы в двух комплементарных дочерних цепях ДНК могут возникнуть одиночные разрывы, расположенные наискосок друг от друга (фиг. 244). Образовавшиеся при этом свободные концы затем удлиняются благодаря ограниченному синтезу, использующему в качестве матрицы родительские цепи ДНК. [c.501]

    Рассмотрим ген, который активирован (или репрессирован) путем связывания с ДНК какого-то специфического регуляторного белка и (или) каким-то изменением структуры хроматина. Каким путем это конкретное состояние будет унаследовано дуплицированными хромосомами дочерних клеток, образовавшихся в результате деления Если во время репликации все белки отделяются от ДНК, специфическое состояние должно заново устанавливаться в каждом цикле клетки. Однако возможно, что определенный механизм сегрегации используется для того, чтобы передать информацию о состоянии экспрессии генов. Одна возможность заключается в том, что специфическая структура может быть увековечена путем сегрегации и дупликации в процессе репликации ДНК. Например, образец, формально эквивалентный полунуклеосом-ной сегрегации, показан на рис. 29.20 (безотносительно к тому, используется ли такой тип сегрегации самими гистонами). Таким образом, комплекс негистоновых белков может сформироваться на ДНК, затем расщепиться на полукомплексы при репликации и вновь достроиться до полных комплексов на каждом дочернем дуплексе [c.371]

    Неизвестно, насколько универсален описанный механизм инициации репликации, основанный на действии ori-специфичной эндонуклеазы. Участие в инициации репликации хромосомы Е. соИ топоизомеразы II (ДНК-гиразы) позволяет предположить возможность существования альтернативного механизма инициации, не связанного с участием особой эндонуклеазы. ДНК-гираза направляет АТР-зависимый процесс расплетания двойной спирали, вводя отрицательные супервитки. Это может приводить к необходимому экспонированию матричных нитей без внесения одноцепочечного разрыва в точке начала репликации. [c.120]

    Однако даже в геноме самых мелких ДНК-вирусов закодированы ферменты, избирательно инициирующие синтез их собственной ДНК, для чего они узнают на хромосоме вируса особую нуклеотидную последовательность - точку начала репликации. Это существенно, потому что вирус может успещно размножаться лищь при том условии, если ему удастся игнорировать регуляторные сигналы клетки, которые в противном случае не дадут вирусной ДНК удваиваться более чем один раз в каждом клеточном пикле. Мы до сих пор не знаем, как эукариотические клетки регулируют синтез своей ДНК, и можно надеяться, что знакомство с механизмами, при помощи которых вирусы избавляются от этой регуляции (а их изучать, разумеется, гораздо легче), даст нам ключ к пониманию регуляторных механизмов клетки-хозяина. [c.317]


Смотреть страницы где упоминается термин Хромосомы механизм репликации: [c.204]    [c.209]    [c.117]    [c.317]    [c.395]    [c.63]    [c.72]    [c.63]    [c.72]    [c.145]    [c.118]    [c.119]    [c.160]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.54 , c.58 ]

Молекулярная биология (1990) -- [ c.54 , c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома репликация

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте