Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен высокой энергии, исследование

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]


    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]

    Приведены [119] результаты исследований полиэтилена различных марок и степеней кристалличности, которые облучали до дозы 360 Мрад потоком электронов с энергией 1,5 Мэв на воздухе при —196 °С. Полиэтилен низкой плотности имел степень кристалличности 46 и 75%, а полиэтилен высокой плотности — 95%. Радиационно-стимулированный ток, пиковое значение которого составляло 2—3 порядка от номинального, наблюдался в образцах полиэтилена низкой плотности в интервале температур от —80 до —60 °С. Для полиэтилена высокой плотности температурный интервал появления пиковых значений стимулированного тока смещался в сторону более высоких температур от —50 до —20 С —для полиэтилена со степенью кристалличности 75% и от —20 до О °С — для полиэтилена со степенью кристалличности 95%. Возникновение пиковых токов позволяет предположить, что это явление обусловливается высвобождением захваченных зарядов, которые образованы вторичными электронами, появившимися при облучении. Этот процесс, по-видимому, связан с рекомбинацией свободных радикалов в указанных интервалах температур. Интенсивность сигнала ЭПР, пропорциональная концентрации свободных радикалов, быстро снижается в результате рекомбинации радикалов в полиэтилене низ- [c.46]


    Поскольку метод тока ТСД соответствует инфразвуковому частотному диапазону, то определение температур переходов в полимерах по положению максимума тока ТСД на температурной шкале (рис. 14.36) является более точным. Метод имеет высокую чувствительность ко всем видам молекулярных движений и разрешающую способность, обеспечивает определение энергии активации процессов, но вследствие своей специфичности недостаточно эффективен при исследовании неполярных или слабополярных полимеров в расплавах, когда на диэлектрические потери накладываются потери из-за электропроводности. Поэтому, например, полиэтилен для исследования диэлектрическим методом подвергают окислению. [c.382]

    Каргиным с сотр. [474—476] и другими авторами [477, 478] проведено (электроннографическое и электронномикроскопическое) исследование сферолитных образований в полиэтилене и упорядоченности, возникающей при кристаллизации или ориентации его цепей, для чего пленки полиэтилена растягивались и облучались быстрыми электронами. Показано, что в результате облучения электронами (энергия 75 или 90 кэв) наблюдается аморфизация вещества при сохранении его сферолитной структуры, что объясняется авторами медленным протеканием релаксационных процессов в кристаллических полимерах и образованием сетки при облучении быстрыми электронами. Аналогичное исследование растянутых пленок показало, что при ориентации сохраняется высокая степень кристалличности, хотя имеет место полное разрушение сферолитных образований- [475]. [c.231]

    Результаты исследований двойного лучепреломления полиолефинов свидетельствуют о том, что выше предела текучести при растяжении при одинаковом удлинении у ПБ наблюдается более высокая степень ориентации по сравнению с полиэтиленом и полипропиленом [82]. При разрушении образца происходит стягивание ориентированных областей, как если бы в этих зонах была аккумулирована упругая энергия. Такое поведение объясняется присутствием свернутых макромолекул внутри кристаллических областей, которые способствуют более широкому распределению напряжений внутри образца [62]. [c.60]

    Мак-Кол и Сликтер [511] изучали молекулярное движение в полиэтилене. Проведено сравнительное исследование двух образцов полиэтилена сильно разветвленного, полученного полимеризацией под давлением, и линейного образца, полученного методом ионного катализа. Показано, что кристалличность второго сохраняется вплоть до температуры плавления полимера в массе, а вращение цепей полимера, связанных в кристаллы, является довольно ограниченным даже в области температур, предшествующих плавлению. Вращение цепей у полиэтилена высокого давления более свободно, вероятно, вследствие дефектов решетки, возникающих при включении в область кристаллита узлов разветвления полимера. Кристалличность в нем исчезает при гораздо более низких температурах, чем в полиэтилене низкого давления. Наблюдается интенсивное движение сегментов цепи макромолекулы в пределах аморфной фазы обоих полиэтиленов, хотя при данной температуре более свободным движением обладает полиэтилен высокого давления. Измерение диффузии в полимер небольших молекул н. гексана и бензола и другие данные однозначно указывают на то, что аморфную фазу в полимере следует считать вязкой жидкостью, даже при температурах, значительно ниже температур плавления полимера. Энергия активации и частотный фактор для движения цепей в аморфной фазе хорошо согласуются с данными, полученными ранее методами диэлектрических потерь и механической релаксации [520, 522—526]. [c.233]

    Перекиси распадаются в условиях реакции на свободные радикалы, которые, реагируя с полиэтиленом, образуют полимерные радикалы. Последние либо образуют поперечные сщивкч, либо вызывают разрыв цепи, либо диспропорционируют, давая двойные связи. При исследовании процесса структурирования полиэтилена перекисью бензоила при 60—90° С было установлено, что поперечные связи между его макромолекулами возникают в результате обрыва радикального процесса распада перекиси вследствие соединения полимерных радикалов 2504-2506,2522,252з Распад перекиси в полиэтилене имеет цепной характер его возбуждают бензоатные радикалы, которые возникают в результате самопроизвольного распада. Стадия роста этой цепной реакции имеет второй порядок. Механизм обрыва изменяется с температурой вследствие значительной разности энергий активации инициирования переноса. При более высоких температурах преобладает неэффективное взаимодействие первичных полимерных радикалов. Наиболее существенную роль играет элементарный акт переноса, определяющий частоту рекомбинации полимерных радикалов или же возникновения поперечных связей. Затрудненная диффузия реагирующих веществ определяет скорость всех реакций, протекающих в полимере. [c.288]


    Как показали результаты этих исследований, при поглощенной дозе 10 Мрад ударная прочность образцов полиэтилена низкой плотности возрастает в среднем в два раза, а предел прочности при растяжении — на 257о- Это обстоятельство позволяет уменьшить толщину стенки мешков, рассчитанных на насыпной вес 20 кг, со 125 до 75 мкм. При реализации этого процесса на пилотной установке, выполненной на базе ускорителя с энергией электронов 500 кэв и мощностью пучка 10 кет, ее производительность составит 180 кг/ч ( 43 м /мин при толщине пленки 75 мкм). Поскольку пробег электронов с энергией 500 кэв в полиэтилене составляет 1400 мкм, то для эффективного использования энергии пучка облучение проводят на бобине или змейкой. При облучении пленки на бобине происходит быстрый разогрев материала, что обусловлено как высокой мощностью поглощенной дозы, так и плохими условияхми для отвода тепла. Максимальное повышение температуры (адиабатические условия), которое развивается внутри материала, состоящего из нескольких облучаемых одновременно слоев, может быть найдено из формулы [106]  [c.97]


Смотреть страницы где упоминается термин Полиэтилен высокой энергии, исследование: [c.63]    [c.270]    [c.69]    [c.127]   
Химические реакции полимеров том 2 (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Полиэтилен высокой энергии



© 2025 chem21.info Реклама на сайте