Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сферолитная структура

    Получение покрытий из кристаллизующихся полимеров — относительно новое направление исследований. Для кристаллических полимеров, каким является полиэтилен, в процессе переработки характерны все стадии кристаллизации, начиная от образования центров кристаллизации и первичных надмолекулярных структур и кончая формированием сферолитной структуры в охлажденном покрытии. [c.121]


Рис. 39. Сферолитные структуры в полимерах Рис. 39. Сферолитные структуры в полимерах
    В кристаллизующихся полимерах, находящихся при температуре ниже точки плавления, вторичные структуры представлены лентами и лепестками . Наиболее совершенной структурой полимера является единичный кристалл, обладающий минимальной поверхностной энергией кристаллической фазы. Менее совершенными в этом отношении являются сферолитные структуры, из которых могут быть построены ленты и лепестки . [c.64]

    В течение долгого времени неявно и явно признавалось влияние сферолитной структуры частично кристаллического поли- [c.393]

    При нагревании до 100—110°С гидрохлорированный цис-поли-изопрен аморфизуется. Если при этих температурах полимер подвергнуть одноосному или двуосному растяжению, то кристаллическая сферолитная структура переходит в аморфную фибриллярную структуру, которая может быть зафиксирована путем быстрого охлаждения образца [84]. Ориентация пленки при повышенной температуре с последующим быстрым охлаждением ( закалка ) увеличивает прочность материала, прозрачность и блеск, уменьшает паро- и газопроницаемость, улучшает морозостойкость и т. д. Одновременно при двуосной ориентации более чем в два раза увеличивается размер пленки. После прогрева фибриллярная структура разрушается и пленка сокращается. [c.222]

    При наличии сферолитной структуры пленки становятся мутными, если диаметр сферолитов превышает половину длины волны света и если сферолит неоднороден по плотности и по показателю преломления. [c.86]

    К ним относятся дифракция рентгеновских лучей, электронов, нейтронов и рассеяние света под большими и малыми углами для изучения надмолекулярной структуры наиболее широко применяют первую группу методов. В частности, методами рассеяния рентгеновского и нейтронного излучения можно изучать кинетику кристаллизации, морфологию получаемых сферолитных структур, сегрегацию структурных элементов на границах раздела фаз не только в индивидуальных полимерах, но и в их смесях [15]. [c.359]

    При увеличении размеров сферолитных структур в результате образования микротрещин возрастает скорость потока частиц через полимер (проницаемость и электропроводность) [19]. [c.365]


    Сферолитами обычно ограничивается структурообразование кристаллических полимеров. Поэтому кристаллическому фазовому состоянию соответствует, как правило, сферолитная структура. Однако в особых условиях в кристаллических полимерах могут формироваться даже монокристаллы (например, в полиэтилене).  [c.33]

    Оказалось, что введение весьма малых количеств гомогенно-распределенных добавок ПАВ (0,1%) резко изменяет размеры образующихся сферолитных структур и вследствие этого существенно изменяет механические свойства полимерных материалов. [c.199]

    Фторопласт-30 (фторлон-30) — кристаллический полимер со сферолитной структурой кристаллических образований и темп. пл. 210—235 °С (в зависимости от условий получения). Он обладает ценным комплексом свойств (тепло- и морозостойкостью, хорошими диэлектрическими показателями, химической стойкостью, высокой стойкостью к радиации) в сочетании с легкой по сравнению с другими фторопластами перерабатываемостью обычными методами. [c.185]

Рис. 15.4. Кристаллизация линейного ПЭВП при формовании волокна. Л1орфоло-гмя структуры, развивающейся в процессе вытяжки волокна (/ — сферолитная структура — зародыши кристалла, складчатая ламель 3 — зародыш кристалла, выпрямленная ламель). Заштрихованные участки заняты расплавом. Скорость отбора волокна Рис. 15.4. <a href="/info/12713">Кристаллизация линейного</a> ПЭВП при <a href="/info/12053">формовании волокна</a>. Л1орфоло-гмя структуры, развивающейся в <a href="/info/1216113">процессе вытяжки</a> волокна (/ — сферолитная структура — <a href="/info/9959">зародыши кристалла</a>, <a href="/info/128134">складчатая ламель</a> 3 — <a href="/info/9959">зародыш кристалла</a>, выпрямленная ламель). Заштрихованные участки заняты расплавом. <a href="/info/305322">Скорость отбора</a> волокна
    В настоящее время имеется немного данных о структуре переходных слоев. Исследование структуры межфазного слоя в смеси полипропилен (ПП)—ПЭ методами оптической и электронной микроскопии показало, что в переходной зоне толщиной 1000 А отсутствуют четко выраженные надмолекулярные образования, а по мере удаления от границы раздела происходит постепенное изменение сферолитной структуры обоих компонентов [396]. [c.205]

    В общем случае сферолитные структуры оказывают наибольшее влияние на механические свойства в том случае, когда размер сферолитов соизмерим с толщиной образца [5, с. 348—350]. На рис. 1.6 показана зависимость разрушающего напряжения при растяжении Стр и относительного удлинения при разрыве ер от тол- [c.23]

    Многие полимеры, в том числе полиэтилентерефталат, при медленном охлаждении из расплава кристаллизуются. В этом случа говорят, что они находятся в кристаллическом, но неориентированном состоянии. Хотя в макроскопическом масштабе размеров такие образцы неориентированы, т. е. характеризуются изотропными механическими свойствами, в микроскопическом масштаба они негомогенны, и при наблюдении в поляризационном микроскопе часто можно обнаружить существование сферолитной структуры. [c.18]

    Поляризационная микроскопия используется главным образом для обнаружения плавления кристаллизующихся цепей с последующим исчезновением сферолитной структуры в зависимости от температуры [35, 40]. [c.215]

    Надмолекулярная организация, или морфология полимеров, рассматривается с целью сопоставления и определения элементов их неоднородности. Наиболее существенная неоднородность связана с тенденцией многих полимеров к (частичной) кристаллизации. Более или менее хорошо определенные кристаллические ламеллы найдены в виде монокристаллов, нагроможденных и (или) выращенных, как показано выше, друг на друге в виде осевых или связанных в пучки слоевых структур, таких, как скрученные агрегаты в сферолитах, а также в виде сэндвич-структур в высокоориентированных волокнах [1—3]. Радиальносимметричный рост скрученных ламелл (рис. 2.4) из нескольких зародышей, который приводит к сферолитной структуре, показан на рис. 2.5. Это свойственно для образцов, выращенных преимущественно из расплава. [c.29]

Рис. 2.5. Сферолитная структура кристаллического расплава полиоксиме-тилена. Рис. 2.5. Сферолитная структура кристаллического расплава полиоксиме-тилена.
    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]


    Влияние ориентации на коэффициент теплопроводности очень велико для гибкоцепных кристаллизующихся полимеров типа ПЭВП. Суммарная анизотропия, несмотря на наличие упорядоченности, не наблюдается, если складчатые цепи уложены в сферолитную структуру, однако при условиях кристаллизации, аналогичных описанным в разд. 3.6, влияние ориентации цепей на коэффициент теплопроводности становится значительным. Хансен и Берни [18] наблюдали двадцатикратную разницу в значениях к, измеренных в поперечном и продольном направлениях относительно ориентации (рис. 5.9). Такой эффект достаточно велик, чтобы иметь практическую значимость. [c.120]

    Интересно, кстати, что добавки зародышеобразователей маскируют образование центров кристаллизации, поскольку сами заро-дышеобразователи интенсивно кристаллизуются на поверхностях. Кроме того, в центре литьевого изделия сферолитная структура становится мелкозернистой. Поэтому целесообразность введения зародышеобразователей определяется требуемым уровнем механических показателей литьевого изделия. [c.540]

    Большая вязкость расплавов и растворов кристаллических полимеров и замедленность в них релаксационных процессов создают условия для образования сферолитных структур. Сферолиты размером 4 мм были получены, например, для полиэтиленсебаци-ната (ПЭС). Присутствие крупных сферолитов в пленке приводит к ее помутнению из-за появления оптической неоднородности. Дефектность полимеров, имеющих крупные сферолиты, проявляется наиболее отчетливо. Разрушение их сопровождается образованием трещин по границам и внутри сферолитов. В процессе структурообразования могут быть получены два типа сферолитов радиальный и кольцевой). Радиальные сферолиты образуются при быстрой кристаллизации, а кольцевые — при медленной (протекающей при более высоких температурах). [c.22]

    Исследование сферолитной структуры полипропилена (ПП) проводят на образцах в виде пленок толщиной 30—40 мкм, получаемых при охлаждении расплава полимера. Для этой цели полимер в виде порощка помещают между предметным и покровным стеклами и нагревают в печи при 200 в течение 15 мин. Через 7—8 мин от начала нагрева, не вынимая образца из печи, надавливают на покровное стекло палочкой для получения пленки надлежащей толщины. Через 15 мин снижают температуру печи с помощью электронного потенциометра до заданной температуры, при которой проводят изотермическую кристаллизацию образца. Таким способом готовят пленки полипропилена при одной из следующих температур кристаллизации 100, 120, 130, 134, 138 С и времени кристаллизации от 60 до 120 мин. [c.196]

    В данной работе изучают изменение размеров сферолитов и показателя ударной вязкости поликапроамида в результате отжига. Сферолитную структуру выявляют методом травления, осноййнном на различной растворимости аморфной и кристаллической частей полимера. [c.198]

    Одним из основных условий образования глянцевого угля является достаточно малая-концентрация исходного соединения углерода в газовой среде. Такая концентрация достигается в том случае, если пневматолиз ведут при малых давлениях,или-в..прц-. сутствии -лцертшх хазов. Если концентрация исходного вещества слишком велика, то образуются сажеподобные угли. Они очень похожи на сажу, но не имеют характерной для нее сферолитной структуры частиц. Впрочем, может образовываться и настоящая сажа, когда пневматолиз идет не на самой поверхности, а вблизи от нее. [c.100]

    Сажа образуется в результате термического разложения газообразных соединений углерода в газовой среде. Для ее частиц характерна сферолитная структура роста, начинающегося из центральной точки. Сферолиты сажи имеют форму шариков диаметром от 100 до 6000 А. Шарики сложены из плотно расположенных карбоидных частиц размером от 20 до 100А. Причем слои С-атомов в этих частицах ориентированы параллельно внешней поверхности шарика. Сферолиты соединяются в цепочки и хлопья, которые образуют элементы структуры высших порядков. [c.103]

    При медленном охлаждении из расплавленного состояния или при нагревании дморфного образца (отжиг) полиэфир вначале становится липким, затем кристаллизуется, теряет прозрачность и становится хрупким. Помут- нение полимера при кристаллизации является типичным признаком возникновения сферолитной структуры, рассеивающей свет во всех направлениях. При кристаллизации ориентированного полимера помутнение отсутствует, что указывает на осуществление в данном случае процесса кристаллизации в ориентированных первичных структурных образованиях, таких, например, как пачки цепей. [c.107]

    В высокоэластических полимерах аморфную часть следует рассматривать как область наиболее дефектных мест кристаллической решетки полимера. При наличии сферолитной структуры следует считать, что аморфная часть полимера сосредоточе-йа по границам сферолитов и, следовательно, диффузия в таких полимерах, так же как и в металлах с мелкокристаллической структурой, должна протекать в основном по межсферолитным пространствам, что и было показано в ряде работ методом авторадиографии 2з. [c.157]

    Интересные результаты о влиянии морфологических форм кристаллизации в полиэтилене и полипропилене на характер распределения радиоактивных газов и их перенос в полимерах получил Бекман При крупно-сферолитной структуре полимера радон диффундирует преимущественно по межсферолитным пространствам и частично вдоль радиусов сферолита. [c.157]

    Таким образом, об ориентации полимерного образца можно судить по его рентгенограмме, снятой на плоскую кассету. При этом на рентгенограмме изотропного образца, в котором отсутствует ориентация, получаются сплошные кольца. Если образец ориентирован, то его устанавливают так, чтобы ось ориентации была перпендикулярна падающему рентгеновскому лучу. На плоской фотопленке, расположенной за ориентированным образцом, вместо колец появляются дуги, а в случае сильной ориентации - пятна. Более полное представление о характере текстуры можно получить, если на плоскую фотопленку снять еще одну рентгенограмму ориентированного образца, расположив его так, чтобы предполагаемая главная ось ориентации совпадала с направлением пучка рентгеновских лучей. При этом сплошные кольца на рентгенограмме ориентированного образца говорят об одноосной ориентации если вместо сплошных колец получаются дуги, то образец имеет аксиально-плоскостную текстуру [27]. Данные рентгеновского рассеяния под малыми углами (МУРР) позволяют получать дополнительные сведения о характере перехода от исходной сферолитной структуры полимера к ориентированной фибриллярной. [c.366]

    Методами ИК-спектроскопии, электронной микроскопии и рентгеноструктурного анализа установлено, что образцы гидро-хлорированных НК [81] и синтетического цис-1,4-изопренового каучука [82] с содержанием связанного хлора до 297о аморфны, а образцы, содержащие более 29% хлора, становятся кристаллическими, причем для НК характерна сферолитная структура [81]. Образцы с низкой молекулярной массой имеют мелкосферолитную структуру дендритного типа. Для образцов с большой молекулярной массой характерна крупносферолитная структура. В отличие [c.41]

    Необходимо отметить, что вытягивание нитей со сферолитной структурой часто протекает с образованием шейки. При этом сфе-ролитная структура исходного образца скачкообразно превращается в фибриллярную, ориентированную в направлении вытяжки [157]. Деформация с образованием шейки характерна также и для вискозных гелеобразных нитей [172, 173]. На рис. 7.54 показана кривая деформации вискозной модельной нити, сформованной в сульфат-аммонийной ванне [172]. При ее вытягивании наблюдается образование шейки, которая затем распространяется по образцу. Вначале при деформации 5—10% наблюдается резкое возрастание напряжения — разрушается сферолитная структура и образуется шейка. Затем шейка распространяется по образцу при постоянном напряжении. После вытягивания на 150% напряжение начинает снова возрастать. [c.234]

    На конформацию макромолекулы и морфологию надмолекулярной организации (НМО) ПВДФ может влиять способ полимеризации ВДФ [156]. При полимеризации в полярной среде, например воде, образуется напряженная зигзаг-конформация ( -форма), в слабополярной — менее напряженная, свернутая в спираль, конформация (а-форма). В процессе полимеризации в слабополярной среде наряду с образованием а-формы возможно возникновение и -формы кристаллитов последние увеличивают дефектность кристаллической решетки. Поэтому а-форма кристаллитов, образующихся прн полимеризации, всегда низкоуиорядоченна (ан-форма). Высокоупорядоченная ав-форма получается при кристаллизации полимера из расплава или из слабополярных растворителей [156]. Морфология НМО тонких пленок ПВДФ также зависит от способа синтеза полимера и его молекулярной массы. Сферолитную структуру имеют пленки образцов полимера, полученных радиационным и химическим инициированием с молекулярной массой а 10 . При [c.83]

    Исследовано изменение НМО блоков ПВДФ при отжиге и деформации образцов со сферолитной структурой и изотропным распределением ламелей и кристаллитов в исходном состоянии [160]. На начальной стадии деформации при комнатной [c.84]

    Эндрюс, Оуэн и Рид [76] исследовали морфологию кристаллических образований в НК и ее влияние на прочность в интервале температур от — 20 до —120°. Кристаллообразование проводилось при растяжениях от О до 600% с фиксацией его в криостате при —26°, При температурах выше —73° (температура стеклования) сопротив иение разрыву мало чувствительно к морфологии кристаллов (фибриллы, сфе-ролиты), и прочность в этой области температур такая же, как у незакристаллизованных вулканизатов при 20°. Ниже температуры стеклования материал со сферолитной структурой становится хрупким и его прочность резко снижается, а прочность материала с фибриллярной структурой оказывается выше в несколько раз. [c.70]

    Наполнители разной природы могут по-разному распределяться в среде полимера и влиять на его структуру. Так, частица высокодисперсного наполнителя может быть центром сферолита, а также вытесняться при кристаллизации в межсферолитные неупорядоченные области и располагаться в основном по границам раздела сферолитов, в местах дефектов. Низкодисперсные наполнители, размер частиц которых велик по сравнению с диаметром ядра сферолита, не могут быть центрами сферолитов. В этом случае влияние на зародышеобразование оказывает сама поверхность частиц. Если частицы наполнителя имеют анизодиаметрическую форму, то в зависимости от соотношения между их длиной и размером сферолитов может образовываться несколько морфологических типов сфе-ролитных структур — от парных сферолитных сростков до протяженных сферолитных цепей . Высоконаполненные кристаллизующиеся полимеры обладают разрыхленной сферолитной структурой и содержат агрегаты из частиц наполнителя. [c.75]

    Однако имеются н релаксационные процессы, где фактор диэлектрических потерь уменьшается при снижении степени кристалличности. К таким релаксационным процессам относятся а-процессы у полиэтилена, полиокспметилена, поливинилиденфторида на низких частотах вблизи Т л. Для а-процесса у этих полимеров характерны энергия активации, составляюшая несколько десятков кДж/моль, уменьшение с повышением частоты и исчезновение этих потерь при плавлении полимера. Этот релаксационный процесс очень чувствителен к изменению сферолитной структуры материала. Так же, как и у аморфных полимеров, у частично кристаллических полимеров могут наблюдаться динольно-сегментальные и дипольно-групповые потери, обусловленные молекулярным движением в аморфных областях [4, с. 137]. [c.91]

    Мак-Крам и Моррис обнаружили, что значительные изменения сферолитной структуры не оказывают влияния на форму дисперсионной кривой в области -релаксации. Они согласны с выводом Такаянаги о том, что этот тип релаксации связан с молекулярным движением внутри кристаллов. Как Синнот, так и Мак-Крам и Моррис наблюдали заметное влияние облучения электронами на - и -релаксационные процессы, в то время как -процесс при облучении оставался без изменений. Синнот рассматривает эти данные как подтверждение предложенного им отнесения [c.172]

    С помощью специальных методов электронно-микроскопических исследований (декорирования) удалось показать, что ориентирующее и зародышеобразующее действие подложки проявляется не по всей поверхности, а локализовано в активных центрах, которыми в случае кристаллических подложек являются места выхода дислокаций, центры вакансий, границы блоков, структурные дефекты. Дефекты обладают избыточной свободной энергией, и на них происходят поверхностные реакции. В результате структура граничных слоев, формирующихся на этих поверхностях, оказывается измененной. Так, кристаллизация полиэтилена на стекле сопровождается развитием обычной сферолитной структуры, в то время как на свежем сколе кристалла КаС1 возникает [379] двухосная текстура игольчатых кристаллов [379], расположенных под углом 82° друг к другу (рис. 111.33, см. вклейку). Аналогичные результаты получены в работе [359]. Полистирольный латекс на поверхности слюды образует равномерные небольшие скопления, а на угольной пленке возникаюг крупные агломераты [357] (рис. 111.34, см. вклейку). Дальнодействие проявляющихся в этих случаях сил оказывается весьма значительным, оно достигает иногда несколько сот и даже тысяч ангстремов [378—381]. Было установлено [221], что структурноактивные добавки, т. е. вещества, в присутствии которых преобразуется надмолекулярная структура полимеров, способны к химическому взаимодействию с макромолекулами. Так, в частности, с помощью ИК-спектров удалось наблюдать взаимодействие хлоридов меди и цинка с полиамидами, точнее, с модельным веществом форманилидом. Изменения в ИК-спектрах свидетельствовали об участии групп С= О и КН форманилида в образовании хелатных комплексов с добавками. Хлорид свинца в этих [c.141]

    Влияние подложки на структуру кристаллизующихся полимеров подробно рассмотрено [386]. Обычно полагают, что у полимера, обладающего сферолитной структурой, на поверхности могут быть обнаружены сферолиты того же диаметра, что и в объеме, или несколько меньшего [387, 388], а также вытянутые сферолиты, ориентированные перпендикулярно поверхности [389— 393], и ориентированные ламелярные кристаллы [394]. Первые два случая можно объяснить действием давления при плавлении, а третий — ориентацией молекул при экструзии. Кроме того, причиной различий в структуре поверхности и блока полимера считают температурные градиенты [390, 391], а также различия в типе и концентрации зародышей кристаллизации [395, 396]. Однако результаты, полученные в работе [386], показывают, что температурный градиент не может вызвать столь существенного различия в структуре поверхности и объема полимера. Разумеется, при быстром охлаждении сферолиты оказываются значительно меньше, чем при медленном, но при этом сферолиты в транскри-сталлитные структуры не превращаются. Концентрация зародышей кристаллизации в объеме и на поверхности также может быть причиной существенного различия в структуре [386]. Основным фактором, обусловливающим различия структуры полимера в наружном слое и в объеме, являются зародышеобразующие свойства подложек [386]. Наиболее четко этот эффект проявляется, когда подложку (пленку полиэтилентерефталата) помещают внутрь [c.142]


Смотреть страницы где упоминается термин Сферолитная структура: [c.155]    [c.395]    [c.564]    [c.193]    [c.379]    [c.224]    [c.200]    [c.43]    [c.178]    [c.146]   
Высокодисперсное ориентированное состояние полимеров (1984) -- [ c.13 , c.70 ]

Термическая стабильность гетероцепных полимеров (1977) -- [ c.50 , c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Сферолитная структура Схлопывание



© 2025 chem21.info Реклама на сайте