Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные среды н органические аммиак

    В табл. 32 показана химическая стойкость наполненных аэросилом резин на основе СКТ, вулканизованных органическими пероксидами [50, 109]. Эта таблица, а также табл. 29, где показана химическая стойкость прокладочных резин на основе кремнийорганических каучуков, дают лишь общее представление, поскольку на стойкость влияет природа наполнителя, вулканизующего агента и условия вулканизации. В целом кислотостойкость силоксановых резин по сравнению с резинами из углеводородных каучуков следует признать невысокой. Однако стойкость к окисляющим реагентам, в том числе и к кислороду, также как и стойкость к тепловому, атмосферному и озонному старению оценивается специалистами высоко. Благодаря гид-рофобности силоксановые резины адсорбируют воду при обычной температуре мало, но перегретая вода или пар вызывают деструкцию. В химической промышленности уплотнительные и другие изделия из силоксановых резин используются на установках, производящих или потребляющих озон, пероксид водорода, диоксид серы, аммиак и другие агрессивные среды. Принципы составления композиций на основе силоксановых каучуков и условиях их вулканизации рассматриваются в обзоре [109 а]. [c.90]


    Алюминиевые бронзы обладают хорошими механическими свойствами и повышенной устойчивостью во многих средах. По устойчивости они превосходят оловянные бронзы. Из них изготавливают детали клапанов, насосов, фильтров и сит для работы в кислых агрессивных средах, а также змеевики нагревательных установок, предназначенных для работ в разбавленных и концентрированных растворах солей при высоких температурах. Недостатком алюминиевых бронз является их чувствительность к местной коррозии по границам зерен и коррозии под напряжением вследствие холодной пластической обработки. Алюминиевые бронзы с 7—12% алюминия наиболее устойчивы и могут успешно применяться для изготовления оборудования травильных ванн, например насосов, клапанов, корзин для травления и др. Вальцованный сплав с 80% Си, 10% А1, 4,5% N1 и 1% Мп или Ре корродирует со скоростью менее 0,1 мм/год в 50%-ной серной кислоте при перемешивании и температуре 110°С или в 65%-ной серной кислоте при 85°С и скорости перемещения раствора 3 м/с. Известна также хорошая устойчивость алюминиевых бронз к действию слабых органических кислот и щелочей, за исключением аммиака независимо от концентрации и температуры. [c.122]

    Медь обладает высокой тепло- и электропроводностью и пластичностью. Устойчива в пресной воде, сухом воздухе, в водных растворах солей, разбавленных серной и соляной кислотах, не содержащих окислителей, в спиртах, в ряде органических кислот, морской воде, в разбавленных растворах щелочей. Разрушается под действием агрессивных сред, обладающих окислительными свойствами (азотная и концентрированная серная кислоты), растворов аммиака и аммиачных солей, щелочных цианидных соединений. [c.60]

    Пленка не смачивается расплавленными металлами Основным ценным свойством фосфатной пленки является ее высокая коррозионная устойчивость во всех видах горючих, смазочных и органических маслах, в бензоле, толуоле и во всех газах, кроме сероводорода. В очень агрессивных средах, например, в щелочах, кислотах, аммиаке, в пресной и морской воде и в водяном паре фосфатная пленка нестойка. Однако, ее коррозионная стойкость легко может быть повышена во много раз после пропитывания ее смазочными маслами,или лаками. По этому фосфатная пленка является наилучшим грунтом под окраску, и в автомобильной промышленности стальные корпуса легковых машин после штамповки фосфа-тируют кругом, и по фосфатному грунту окрашивают эмалями. [c.240]


    Пленка не смачивается расплавленными металлами. Основным ценным свойством фосфатной пленки является ее высокая коррозионная устойчивость во всех видах горючих, смазочных и органических маслах, в бензоле, толуоле и во всех газах, кроме сероводорода. В очень агрессивных средах, например в щелочах, кислотах, аммиаке, в пресной и морской воде и в водяном паре фосфатная пленка нестойка. Однако ее коррозионная стойкость легко может быть повышена во много раз после пропитывания ее смазочными маслами или лаками. [c.185]

    Дерево отличается хорошей Химической стойкостью в ряде агрессивных сред на него практически не действуют растворы сернокислых и хлористых солей, мыльные растворы, аммиак, органические кислоты (уксусная, лимонная, щавелевая), спирты, растительные и минеральные масла и т. д. Однако в растворах технически важных минеральных кислот древесина не отличается достаточной стойкостью. Так, применение ее со слабыми растворами серной кислоты и при повышенных температурах недопустимо из-за гидролиза. [c.87]

    Политетрафторэтилен фторопласт-4 (фторлон-4) получают путем радикальной полимеризации тетрафтор-этилена (Ср2 = СРг). Он представляет собой порошок белого цвета. Полимер практически стоек ко всем минеральным и органическим кислотам, щелочам, органическим растворителям, окислителям, газам и другим агрессивным средам. Разрушение политетрафторэтилена наблюдается лишь прн действии расплавленных щелочных металлов (или растворов их в аммиаке). [c.96]

    При обычной температуре медь химически мало активна, во влажном воздухе постепенно покрывается тонкой и плотной пленкой основных сернокислых и углекислых солей, защищающей от дальнейшего окисления. В отсутствие других окислителей разбавленная серная и соляная кислоты на медь не действуют. Незначительно действуют на нее органические кислоты. Взаимодействие меди с кислородом начинается уже при комнатной температуре. При высоких температурах скорость окисления значительно возрастает и образуется пленка закиси меди красного цвета. Медь устойчива против коррозии в атмосферных условиях, однако разрушается под действием аммиака, сернистого газа, азотной кислоты и некоторых других агрессивных сред. [c.110]

    Химическая стойкость политетрафторэтилена очень высока. Он практически стоек ко всем минеральным и органическим кислотам, растворам щелочей, ко всем растворителям, окислителям и другим агрессивным средам. Разрушается лишь расплавленными щелочными металлами (Na) илк растворами их в аммиаке, элементарным фтором и трехфтористым хлором. [c.120]

    В зависимости от характера воздействия рабочей среды механизм коррозии металлов может быть химическим или электрохимическим. Химическая коррозия вызывается взаимодействием между металлической поверхностью и агрессивной средой, не проводящей электрический ток такими средами являются сухие газы (хлор, хлористый водород, сернистый газ, кислород, воздух и др.) и жидкости — органические растворы (хлороформ, дихлорэтан, продукты переработки сернистых нефтей и др.), обладающие высокой активностью и разрушающие металл. Коррозию, вызываемую действием сухих газов, называют газовой. Обычно газовая коррозия происходит при высоких температурах, а в некоторых процессах и при одновременном действии высоких давлений (получение синтетического аммиака, синтетического спирта и др.). При газовой коррозии происходит в основном двусторонняя диффузия атомов рабочей среды и атомов металла. [c.5]

    Политетрафторэтилен — наиболее химически стойкий материал из всех известных пластмасс и многих других материалов (золота, платины, стекла, фарфора, эмали, специальных сталей и сплавов). Он практически стоек ко всем минеральным и органическим кислотам, щелочам, органическим растворителям, окислителям, газам и другим агрессивным средам. Разрушение политетрафторэтилена наблюдается лишь при действии расплавленных щелочных металлов (или растворов их в аммиаке), элементарного фтора и трехфтористого хлора при повышенных температурах. Вода не смачивает фторопласт и не оказывает никакого воздействия на него при самом длительном испытании. [c.288]

    Резиновые трубки (шланги) служат для соединения отдельных частей в приборах и для подвода и отвода воды и газа. Однако резиновые трубки легко разрушаются при действии высокой температуры и некоторых газов (хлор, кислород, хлороводород, аммиак и др.). Поэтому часто применяют трубки из полиэтилена, которые устойчивы к действию большинства органических веществ и агрессивных сред. Такие трубки обычно используют только при комнатной температуре (при нагревании они легко деформируются). [c.9]


    В неокисляющих агрессивных средах защитная пленка на поверхности хромистых сталей не формируется, поэтому они интенсивно корродируют в серной, соляной, а также в органических кислотах. При наличии в среде ионов-активаторов (ионы СГ, Вг", Г) нержавеюище стали подвергаются местной точечной коррозии. Эти стали достаточно стойки к коррозии под напряжением в растворах аммиака и нитратов, стойки они и в щелочных растворах при невысоких температурах. [c.119]

    Полиариленфталиды - аморфные ароматические полимеры, сочетающие высокую тепло- и термостойкость с растворимостью в широком круге органических растворителей [80-90] и устойчивостью к действию агрессивных сред (концентрированных растворов аммиака, соляной и серной кислот, едкого натра) при повышенных температурах и давлении [91-92]. [c.290]

    ПТФЭ — белый, непрозрачный термопластичный полимер, выпускаемый как в виде тонкого или волокнистого порошка, так и в виде водной суспензии, содержащей 50—65% тонкодисперсного порошка. Этот полимер обладает уникальным комплексом физических и химических свойств. Он не растворяется ни в одном из известных органических растворителей и по химической стойкости превосходит все известные материалы (золото, платину, стекло, фарфор, эмаль, специальные стали и сплавы). Он стоек ко всем минеральным и органическим кислотам, щелочам, окислителям, газам и другим агрессивным средам. Разрушение ПТФЭ наблюдается лишь при действии расплавленных щелочных металлов (и растворов их в аммиаке), элементарного фтора и трехфтористого хлора при повышенных температурах. Вода не смачивает фторопласт-4 и не оказывает никакого воздействия на него при самом длительном испытании. [c.87]

    Химическая стойкость оловянистых бронз в растворах серной кислоты, в некоторых органических кислотах и смолах выше, чем стойкость меди. В азотной кислоте и в других окислительных средах, а также в аммиаке бронзы (как и латуни) неприменимы. Оловянистые бронзы в основном применяются для изготовления деталей, которые должны обладать высокой коррозионной стойкостью и хорошими антифрикционными качествами. Для литья, арматуры и антифрикционных деталей применяются оловянистые бронзы, содержащие олово, цинк и свинец. Для коррозион-ностойких антифрикционных деталей, в частности для деталей, работающих в морской и пресной водах, применяется бронза марки БрОЦСНЗ-7-5-1 для влажной атмосферы и пресной воды— БрОЦСЗ-2-5 для подшипников, втулок и вкладышей, не работающих в агрессивных средах,—БрОС7-17. [c.144]

    Ниобий является тугоплавким и жаропрочным металлом. По химическим свойствам ниобий близок к танталу. Оба металла чрезвычайно устойчивы на холоду к действию многих агрессивных сред, хотя в этом отношении ниобий уступает танталу. Ниобий характеризуется хорошей коррозионной стойкостью против действия многих кислот и растворов солей. На ниобий не действует царская водка, соляная и серная кислоты при 20°, азотная, фосфорная, хлорная кислоты, водяные растворы аммиака и многие другие неорганические и органические вещества. Плавиковая кислота, ее смесь с азотной кислотой, а также щелочи растворяют ниобий. В кислых электролитах на ниобие образуется окисная пленка, имеющая высокие диэлектрические характеристики, что позволяет использовать ниобий, как и тантал, в радиоэлектронике для изготовления электролитических конденсаторов. [c.84]

    До настоящего времени в ходу лабораторная посуда, электрохимические электроды и нерастворимые аноды из платины. Еще не так давно большое количество электрических печей сопротивления изготовлялось с платиновой обмоткой (ныне платиновая обмотка с большим успехом заменяется жаростойкими сплавами на железной основе с хромом и алюминием). До настоящего времени платина довольно часто применяется для термопар и неокисляющихся электроконтактов. В виде сплавО В платина применяется для фильер при производстве искусственного волокна. Используе 1ся платина также в качестве контакта и катализатора при окислении аммиака в азотную кислоту. В некоторых химических производствах применяют обкладку платиновыми листами (толщиной не менее 0,1 мм) аппаратов и отдельных деталей приборов, работающих в наиболее агрессивных средах. Плагина стойка во многих минеральных и во всех органических кислотах и едких щелочах. Однако смесь соляной и азотной кислот, а также смесь соляной кислоты с другими сильными окислителями разрушают платину, хотя и заметно медленнее, чем золото. Чистые галогено-водородные кислоты при нормальных температурах почти не действуют на платину, однако при нагреве начинают воздействовать (причем более сильно бромисто-водородная и иодисто-водород-ная). Свободные галогены при высоких температурах также воздейст вуют на платину. Платина не окисляется ори нагреве на воздухе и з кислороде до температуры плавления, однако подвергается разрушению даже при гораздо более низких температурах в атмосферах, содержащих СО, или в контакте с углем, при одновременном наличии хлора или хлористых солей, следствие способности образовывать летучие карбонил-хлориды платины. [c.577]

    Фторопласт - наиболее ценный конструкционный неметаллический материал. По антикоррозионным свойствам он превосходит все известные материалы, включая платину, стоек ко всем минеральным и органическим кислотам, совершенно не растворим ни в одном из известных растворителей, но нестоек к воздействию расплавленных щелочных металлов или их растворов в аммиаке, элементарного фтора и трёхфтористого хлора. Фторопласт не сваривается и с трудом склеивается. Применяется для изготовления трубопроводов, деталей аппаратов, работающих со средами средней и высокой агрессивности. Суспензия фторопласта-3 используется для антикоррозионных покрытий стальной ап-шфатуры. [c.12]

    Moho-, ди- и триэтаноламины — органические основания. Химические свойства их водных растворов аналогичны свойствам растворов аммиака. Так же, как водные растворы аммиака, они не агрессивны по отношению к железу. Моноэтаноламин применяется даже как ингибитор для защиты стали от атмосферной коррозии и коррозии в нейтральных водных средах.  [c.28]


Смотреть страницы где упоминается термин Агрессивные среды н органические аммиак: [c.178]   
Коррозионная стойкость материалов (1975) -- [ c.520 , c.522 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Агрессивные среды н органические

Среда органическая



© 2025 chem21.info Реклама на сайте