Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Порядок влияние полярности молекул

    Энергия поляризационного взаимодействия между молекулами примерно на порядок меньше энергии лондоновского и дипольного взаимодействия. Например, для двух молекул пиридина при Я = 2 нм, о 1,6- 10 кк Т при 300 К- Тем не менее, поляризационное взаимодействие между молекулами оказывает существенное влияние на свойства полярных жидкостей. Полярная молекула поляризует всю окружающую ее массу молекул и создает (индуцирует) в этом окружении некоторый дипольный момент А[х, величина которого зависит от поляризуемости и диэлектрической проницаемости среды. Поляризация окружающей среды создает поле ( реактивное поле) в том элементе объема, где находится полярная молекула. В результате происходит дополнительная поляризация полярной молекулы. Реакция окружающей среды на присутствие в ней полярной молекулы приводит к появлению реактивного поля, действующего на молекулу. В итоге возникает существенный дополнительный вклад в энергию взаимодействия полярных молекул со средой. Нетрудно понять, что этот вклад пропорционален числу молекул в единице объема. Он значителен в жидкой фазе и мал в разреженных парах. Влияние этого фактора будет рассмотрено в гл. П. [c.29]


    Для экспериментальной проверки изложенных выводов нами были измерены диэлектрические проницаемости и потери бинарного раствора ацетон — бензол при длине волны X, = 8,15 лгж в интервале температур от 0 до - -40° (табл. 1). Диэлектрические свойства ацетона при низких частотах довольно хорошо описываются теорией Онзагера. Можно считать, что в ацетоне ближний ориентационный порядок выражен слабо. Следует ожидать, что в растворе ацетона в бензоле (неполярном растворителе) практически нет каких-либо преимущественных ориентаций полярных молекул по отнощению друг к другу. Наблюдаемые отклонения значений е и г" раствора от аддитивности в этом случае, по-видимому, полностью обусловлены влиянием флюктуаций концентрации. Если это так, то уравнения (14, 15) должны дать количественное отображение экспериментальных данных. [c.41]

    Присоединение галогенов к олефинам в воде, спирте, водной уксусной кислоте (и ледяной уксусной кислоте, если концентрация галогена не превышает - 0,001-М) представляет,собой реакцию второго порядка. Добавление воды и ионизирующих солей ускоряет реакцию это вполне понятно, так как реакция носит гетеролитический характер. В уксусной кислоте (но не в более полярных растворителях) присоединение брома (в области концентраций - / о М) протекает как реакция третьего порядка. Уменьшение концентрации брома, повышение температуры или добавление воды к растворителю изменяют кинетический порядок реакции на второй. Влияние строения олефина (стр. 151) на скорость этой реакции третьего порядка таково же, как и в случае реакции второго порядка. Эти данные свидетельствуют о том, что механизм реакции третьего порядка в данном случае незначительно отличается от механизма реакции второго порядка, хотя в переходном состоянии и участвует вторая молекула галоида. [c.143]

    Порядок замещения в бензольном кольце нашел своеобразное объяснение в исследованиях Голлемана, истолковывавшего наблюдаемые закономерности с точки зрения степени насыщенности кольцевого углерода заместите.яем, во взглядах Фрея и Форлендера, связывающих ото явление с полярностью и поляризацией кольца под влиянием замещающего радикала, в известных воззрениях Чичибабина [31 о трехвалентном уг,же-роде, в близком современным взглядам толковании Беркенгейма как следствия чередования зарядов в бензольном кольце производных бензола и в других гипотезах. В настоящее время теоретические объяснения этой закономерности пересматриваются с точки зрения электронной теории строения ор1 анических соединений и с позиций современных представлений о внутреннем строении атомов и молекул [4—7]. [c.385]


    Выше представлено описание группы явлений, наблюдаемых при проведении экспериментов по ЯМР-д с растворами диамагнитных белков. Следует подчеркнуть, что полученные результаты отражают влияние растворенного белка и суспендированных клеток на усредненную динамическую предысторию молекул растворителя. Авторы формулируют на основании этих данных точку зрения на гидратацию и взаимодействия растворитель— белок и белок — белок, которые имеют гидродинамическую природу в масштабах, сравнимых с размером белковой молекулы, и кинетическую природу на уровне атомных размеров. Гидратация, в той степени, в которой она отождествляется с особым слоем воды на поверхности белка, относится к молекулам воды с определенной геометрией. Предполагается, что эта геометрия согласована с возможностями образования водородных связей с аминокислотными остатками, выходящими на поверхность макромолекулы, но эти молекулы воды могут быстро обмениваться с объемной водой. Любое замедление движения молекул растворителя обусловлено пространственными затруднениями, возникающими при их диффузии вблизи поверхности молекулы белка, особенно вблизи полярных групп. Шкала времени имеет порядок 10 с. Хотя это время соответствует в 100 раз более медленному движению, чем движение молекул растворителя, оно все же достаточно мало по сравнению с соответствующими временами релаксации во много раз больших по своим размерам молекул белка. Авторы не обнаружили никаких признаков существования особых связывающих центров со значениями времен обмена больше 10 9 с. [c.181]

    В случае вторичных черных пленок толщиной 44 А Мизелс и сотрудники [217, 218] нашли, что краевой угол 0 = 8°50, а поверхностное натяжение а = 29,15 дин1см. Отсюда с учетом значения 0 = 29,5 дин см имеем П=1,5-10 дин см . Если на расстояниях порядка 44 А действуют только молекулярные силы, то константа Гамакера будет равна 1,5-10 эрг. Она превышает lia порядок величину постоянной, вычисленную из экспериментальных данных изучения равновесной толщины. Нельзя однозначно установить, объясняется ли такое расхождение влиянием полярных групп на молекулярное притяжение или возникновением дополнительных дипольных сил взаимодействия адсорбированных молекул воды, ориентированных благодаря образованию водородных связей. Исследование поведения углеводородных черных пленок между капельками воды может содействовать решению поставленного вопроса. [c.110]

    Кричевский и др. [279] элюировали пробы на силикагеле смесями эфир—петролейный эфир—метаиол—уксусная кислота (70 30 8 1) и изооктан—изопропиловый зфир—уксусная кислота (2 1 1). В качестве обнаруживающего реактива они использовали раствор 0,5 мл анисового альдегида и 1 мл концентрированной серной кислоты в 50 мл уксусной кислоты. Эти авторы составили таблицу различных цветных реакций. Энерот [280] исследовал хроматографические характеристики 40 желчных кислот в 17 различных растворяющих системах (табл. 29.9). Для обнаружения пятен он опрыскивал пластинки концентрированной серной кислотой и прокаливал их до 240°С. Анализ полученных данных позволил сделать ряд выводов о влиянии различных факторов на разделение. Кислоты с оксигруппами у атомов С-3 более полярны, чем соответствующие соединения с оксигруппами у атомов С-7 и С-12. Для кислот с одной оксигруппой или одной оксогруппой в молекуле наблюдался следующий порядок изменения полярности 3а>3р>7р>12р>7а 12а>3-0кс0> >7-оксо>12-оксо. При наличии нескольких заместителей установить вклад отдельных групп в полярность данного соединения труднее, однако и в этом случае видно влияние За-оксигруппы [c.338]


Смотреть страницы где упоминается термин Порядок влияние полярности молекул: [c.395]    [c.143]    [c.44]    [c.124]   
Избранные работы по органической химии (1958) -- [ c.46 , c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Полярность молекул

Полярные молекулы



© 2025 chem21.info Реклама на сайте