Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прометий также Редкоземельные элементы

    При электролизе на ртутном катоде прометий переходит в амальгаму при плотности тока выше 75 ма/см , однако его переход осуществляется после выделения основных количеств других редкоземельных элементов, способных восстанавливаться на ртутном катоде в этих условиях. Следует сказать, что прометий восстанавливается на ртутном катоде только в присутствии лантаноидов, имеющих в растворе устойчивую степень окисления - -2. На процесс электролиза оказывает влияние присутствие и природа комплексообразующих ионов, а также ионов щелочных металлов. [c.287]


    В книге рассматриваются также вопросы, связанные с радиоактивностью и изотопией редкоземельных элементов. В отдельной главе рассказывается о прометии — самом своеобразном элементе в редкоземельном семействе. В конце книги уделяется внимание практическому использованию редкоземельных элементов, которые проникли теперь почти во все области человеческой деятельности. [c.4]

    Трудности возникают также в связи с присутствием в отработанном топливе большого числа компонентов, содержащих такие элементы, как щелочной металл цезий, и искусственные элементы — технеций (химически сходный с марганцем) и прометий (один из редкоземельных элементов). Наконец, трудность возникает в связи с химическим сходством урана и плутония. [c.22]

    Скандий, иттрий и лантан в природе обычно встречаются вместе четырнадцатью лантаноидами — элементами от церия (атомный номер 58) до лютеция (атомный номер 71) . Все эти элементы, за исключением прометия (полученного искусственно), обнаружены в природе в очень небольших количествах , причем основным источником этих элементов является минерал монацит — смесь фосфатов редкоземельных элементов, одержащая также некоторое количество фосфата тория. [c.557]

    Лантаноиды встречаются в природе обычно вместе, а также с лантаном и иттрием. Их вместе с элементами побочной подгруппы третьей группы (кроме 8с) называют редкоземельными металлами. Главным минералом редкоземельных элементов является монацитовый песок — смесь фосфатов (ЭРО4), содержаш,ая еще и ТЬ. Однако прометий Рт — радиоактивный элемент — в земной коре не встречается. Его получают искусственно. Он был обнаружен в 1947 г. в продуктах деления ядер урана в ядерных реакторах. [c.321]

    Таким образом, к 1907 г. были открыты 14 редкоземельных элементов (а также скандий и иттрий). Элемент №61 до настоящего времени в природе обнаружен не был даже в ничтожных количествах. Он впервые искусственно получен только в 1947 г. Маринским и Гленденином в США [8] из продуктов деления урана в ядерном реакторе назван прометием. Установлено существование одиннадцати его изотопов — от до Фт. Наиболее долгоживущий изотоп (2,64 г) полу- [c.50]

    Поведение трапсплутониевых элементов при хроматографических разделениях на анионитах также служило предметом исследований. Элементы с атомными номерами большими, чем у кюрия, удерживаются анионитами в среде концентрированной соляной кислоты [73, 120 ], в то время как америций и кюрий немедленно элюируются вместе с редкоземельными элементами. Для анионообменного отделения трапсплутониевых элементов от лантанидов применялись также кон-центрированные растворы хлорида лития [44] и тиоцианатные комплексы [22, 87, 115, 120]. Эти исследования дали ценную информацию о свойствах новых элементов. Анионообменный метод обеспечивает лучшее отделение трансплутониевых элементов от редкоземельных, чем описанный выше катионообменный метод. Примером практического применения анионообменного метода служит отделение прометия от америция, которое очень трудно осуществить другими способами. Полное разделение этих элементов достигается элюированием ЪМ тиоцианатом аммония [96]. [c.345]


    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]

    Заканчивая обзор истории открытия элементов, следует добавить, что в 1905—1907 гг. Ж. Урбен и А. Вельсбах открыли редкоземельный металл лютеций. В 1918 г. О. Ган и Л. Майт-нер открыли протактиний, обнаруженный незадолго до них также Ф. Содди и Д. Кранстоном. В 1923 г. Г. Хевеши и Д. Костер, применив новый метод рентгеноскопии, открыли гафний. Спустя 3 года немецкие ученые В. Ноддак, И. Такке, О. Берг предсказали существование рения, а в 1925 г. он был с достоверностью обнаружен экспериментально Вальтером и Идой Ноддаками. Элемент с порядковым номером 87 был найден в 1939 г. М. Переем и получил название франций . Двумя годами ранее был обнаружен элемент под номером 43 — технеций, а в 1945 г.— элемент 61—прометий . Последние два элемента были получены искусственным путем в виде радиоактивных изотопов. [c.144]

    Главный изотоп, прометий-147, радиоактивен и испускает слабое бета-излучение. З и данные совпали с теоретическими предсказаниями. После того, как стали известны характерные свойства нового элемента, опыты по обнаружению его в природе, проводившиеся Эреметсе и другими учеными, имели некоторый успех. Работая в промышленном масштабе, финский химик выделил из 6000 т апатита около 20 т оксидов редкоземельных элементов, а из них — 3,8 кг смеси оксидов самария и неодима. После разделения на ионообменнике осталось целых 83 мг, которые испускали слабое бета-излучение. Эту фракцию Эреметсе исследовал в 1965 году и ее бета-спектр совпал со спектром прометия-147. По оценке Эреметсе, в концентрате, полученном из 6000 т апатита, должно содержаться 10 " г прометия. Кроме того, следы этого элемента были найдены также в урановой смолке. Предполагается, что природный прометий образовался захватом нейтронов 60-м элементом, неодимом, либо спонтанным делением урана-238, а также индуцированным делением урана-235. Однако такие природные находки не отвергают определения прометия, как искусственного элемента. Ведь ощутимые количества его и сегодня можно получить только из продуктов деления урана мощные реакторы в 10 000 кВт дают ежедневно 1500 мг прометия-147. В 1959 году годовой выпуск прометия в США повысился уже до 650 г. [c.158]

    Выделение и разделение радиоактивных редкоземельных металлов также возможно электрохимическими способами 92-94, 101, 102, 109 110 Электролиз С примененивм ртутного катода может быть эффективно использован при анализе продуктов расщепления отдельных редкоземельных элементов протонами больпшх энергий, когда требуется, например, отделить от основного продукта, полученного в результате облучения, радиоактивные изотопы, образующиеся при таком облучении С помощью электролиза на ртутном катоде могут быть успешно разделены такие радиоактивные изотопы, как иттрий, иттербий, лютеций прометий, и другие редкоземельные элементы отделены от европия [c.119]


    Были исследованы физико-химические свойства, а также ИК-спектры селенеяоилацетоиатов редкоземельных элементов (кроме церия и прометия) [76]. Изучение кислотно-основных свойств р-дикетонов позволяет оценить их практическую пригодность в процессах комплексообразования. Константа диссоциации, представляющая собой характеристику кислотной силы енольной формы, зависит от природы и числа заместителей в р-дикетоне [77—80]. [c.308]

    Редкими металлами в совр. технике условно называют нек-рые химич. элементы, в большинстве по своим свойствам металлы, области возможного исполт.-зования, природные ресурсы и технология произ-ва к-рых уже достаточно определены, но к-рые еще редко и в относительно малых количествах применяются в пром-сти, поскольку при достигнутом ранее уровне техники еще можно было обойтись без их широкого использования. Развитие применения и произ-ва РМ обусловлено возникновением потребности пром-сти в новых высокоэффективных материалах. К РМ относится ок. 30 химич. элементов литий, цезий, бериллий, стронций, иттрий, редкоземельные элементы, цирконий, гафний, ниобий, тантал, а также т. н. редкие рассеянные химич. элементы галлий, индий, таллий, германий, селен, теллур, рений. Группа РМ не остается неизменной из РМ выбывают химич. элементы, получившие широкое применение в пром-сти, каковы вольфрам, молибден, уран или титан, еще недавно относившиеся к РМ. Из группы современных РМ также могут в ближайшее время перейти в разряд обычных материалов техники цирконий, стронций, литий, церий, ниобий как наиболее подготовленные к широкому пром. использованию. Вместе с тем группа РМ пополняется не изученными ранее химич. элементами после установления их полезности для произ-ва и возможности использования при дальнейшем повышении уровня техники. К ним относятся, напр. рубидий, скандий, гольмий, тербий, эрбий, иттербий, диспрозий, лютеций, изученные пока еще недостаточно, но условно уже включаемые в состав РМ. Группа РМ пополргатся и такими хпмич. элементами, как технеций, прометий, трансурановые актиноиды, к-рые будут воспроизводиться искусственно и выделяться при регенерации отработанного ядерного топлива в установках для мирного использования атомной энергии в относительно значительных количествах, позволяющих организовать их регулярное применение в пром-сти. [c.417]


Смотреть страницы где упоминается термин Прометий также Редкоземельные элементы : [c.138]    [c.427]    [c.321]    [c.236]    [c.377]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Прометий

Элемент Прометий

Элементы редкоземельные



© 2025 chem21.info Реклама на сайте