Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация числа заместителей

    Способность непредельных соединений к полимеризации зависиг от расположения двойных связей, характера и числа заместителей. Общие закономерности влияния строения непредельных соединений на их способность к полимеризации были впервые установлены С. В. Лебедевым. Впоследствии был получен дополнительно значительный экспериментальный материал, но этот вопрос не получил пока еще исчерпывающего теоретического объяснения. [c.102]


    По мере увеличения размера и числа заместителей пространственные затруднения растут, что приводит в пределе к полной невозможности полимеризации соответствуюш их соединений. Например, фторзамещенные этилена благодаря малым размерам атома фтора (атомный радиус 1.36 A) не утрачивают способности к полимеризации во всем ряду вплоть до тетрафторэтилена, но для хлорпроизводных полимеризация (атомный радиус хлора 1.81 А) может быть осуществлена только в случае моно- и 1.1-дизамещен-ного. [c.215]

    КОСТИ кольчатых систем. Хотя вопрос этот многократно служил предметом теоретического и экспериментального исследования, однако достигнутые результаты носят отрывочный и чисто качественный характер. Теория натяжения Байера разрешает лишь одну часть задачи — влияние числа членов на стойкость цикла роль заместителей до сих пор, несмотря на массу затраченного труда, ие выяснена Р ] можно принять с оговорками, что увеличение числа заместителей повышает стойкость кольца о влиянии нена-сыщенности на прочность системы ничего определенного неизвестно. Между тем, в области полимеризации эти обстоятельства имеют большое значение. [c.17]

    Эффективность катализатора в очень большой степени зависит от природы лигандов, расположенных вокруг реакционного центра (насколько это важно, было показано на примере гетерогенных катализаторов Циглера — Натта). Необходимо, чтобы связь металл — олефин была достаточно сильной, чтобы притянуть олефин к реакционному центру, и в то же время а-связь металл — углерод должна быть достаточно слабой, чтобы позволить свободное перемещение лиганда. Интересно отметить, что катионная полимеризация олефинов с использованием простых протонных кислот или кислот Льюиса в качестве катализаторов возможна только тогда, когда в молекуле олефина существуют активирующие заместители. В то же время катализаторы Циглера — Натта более эффективны в тех случаях, когда молекулы олефина не обременены большим числом заместителей, — здесь сказывается влияние как электронных, так и пространственных факторов. Как уже говорилось выше, этилен трудно полимеризуется классическими методами, в то время как в присутствии катализаторов Циглера — Натта полимеризация идет легко. [c.252]

    Активность мономера в процессе полимеризации зависит в основном от его строения, природы и числа заместителей, наличия сопряжения связей, полярности. В зависимости от типа заместителей в а-положении к двойной связи меняются ее прочность, характер ориентации молекул в сфере действия неспаренного электрона свободного радикала и возможность реакции присоединения молекулы мономера к свободному радикалу. [c.53]


    Способность непредельных соединений к полимеризации зависит от расположения двойных связей, природы и числа заместителей (полярности мономера), а также от пространственных (стериче-ских) факторов. [c.531]

    Способность мономеров к полимеризации зависит от расположения двойных связей, характера и числа заместителей. Общие закономерности о связи строения непредельных соединений с их способностью к полимеризации были впервые установлены С. В. Лебедевым. С развитием полимерной науки эти закономерности непрерывно уточняются. [c.94]

    Второй вид стереохимического влияния заключается в том, что в некоторых случаях при небольшом числе заместителей последние, не оказывая существенного влияния па протекание первого этапа полимеризации, вызывают далее возникновение напряжения в этой системе, в результате чего имеет место стабилизация активного промежуточного продукта в устойчивый димер или тример того или иного строения [49, 55]. [c.20]

    Было установлено, что в изомерных углеводородах, имеющих сопряженную диеновую систему двойных связей С = С — С = С, скорость полимеризации повышается при. перемещении заместителей от крайних атомов угле-родов сопряженной системы к средним и, наоборот, понижается при перемещении заместителей в обратном направлении. Увеличение числа заместителей у средних атомов сопряженной системы также повышает склонность к полимеризации, а увеличение числа заместителей у крайних углеродных атомов системы отрицательно сказывается на склонности углеводородов к полимеризации. [c.46]

    В изомерных углеводородах, содержащих алленовую диеновую систему двойных связей, С = С = С, положение заместителей не сказывается на скорости полимеризации, увеличение же общего числа заместителей в системе повышает скорость полимеризации. [c.46]

    У соединений с двумя конъюгированными двойными связями наблюдаются зависимости более сложного характера. Прежде всего следует отметить, что конъюгированные двойные и тройные связи являются, как правило, более активными, чем одинарные и изолированные связи того же типа. Вместе с этим зде( ь также отчетливо проявляется влияние числа заместителей, их природы и, кроме того, их положения. Достаточно сравнить склонные к полимеризации изомеры типа Hj = R — СН = Hg с более устойчивыми изомерами R H = СН — СН = СН2 на следующих примерах (в скобках указана относительная скорость полимеризации)  [c.200]

    Для полимеризации циклосилоксанов предложено много различных катализаторов и каталитических систем, включающих главным образом сильные протонные и апротонные кислоты и сильные основания. Выбор катализатора определяется природой заместителей у кремния, влияющих на реакционную способность силоксановых связей, а также числом звеньев в цикле и необх )-димостью исключить возможность отщепления заместителей в процессе полимеризации. [c.473]

    Впервые на возможность полимеризации диеновых углеводородов с сопряженными двойными связями и на особенности этого процесса указал С. В. Лебедев. Им были установлены условия полимеризации диенов и зависимость скорости этого процесса от характера и положения замещающих групп. Изучив скорость полимеризации различных непредельных соединений с сопряженными двойными связями, в том числе производных дивинила, Лебедев пришел к следующему выводу скорость полимеризации бутадиена возрастает с введением в его молекулу заместителей в положение 2 и еще более увеличивается при введении двух заме- [c.225]

    На реакционную способность мономера оказывают влияние индуктивный эффект и эффект сопряжения, которые вызываются действием заместителей. Действительно, способность непредельных мономеров к полимеризации зависит также и от природы заместителей, их числа, расположения в молекуле мономера двойных связей. Введение в молекулу этилена различных по своей электронной, природе замещающих групп вызывает поляризацию двойной связи, что ведет к увеличению реакционной способности мономера. Как будет показано, процесс полимеризации часто связан с возникновением свободных радикалов, которые реагируют с мономерами (радикальная полимеризация). При этом со свободным радикалом, обладающим электрофильными свойствами, легче будет реагировать именно поляризованная, а значит, реакционноспособная моле  [c.387]

    Активность мономеров в реакциях радикальной полимеризации существенно зависит не только от природы, но и от числа одинаковых или разных заместителей в молекуле мономера. Так, наличие двух бензольных колец при Одном атоме углерода в молекуле мономера полностью подавляет его способность к полимери- [c.31]

    Способность к полимеризации лактонов зависит не только о г числа членов в цикле, но также от числа, размера и положения заместителей. [c.166]


    При наличии таких заместителей, как фтор, обладающих малым радиусом, полимеризация производных этилена происходит независимо от числа замещенных атомов водорода. Но достаточно замещения двух атомов водорода в этилене фенильными группами, [c.237]

    Способность мономеров участвовать в радикальной или ионной полимеризадии зависит от различных факторов [1], в частности от поляризации двойной или других связей (например, в случае циклических мономеров), числа заместителей, природы инициатора и температуры. Если способность мономера к радикальной полимеризации можно установить сравнительно легко, то в случае ионной полимеризации, когда нужно получить полимеры с высокой [c.16]

    Попытка связать величину константы передачи цепи со структурой молекулы передатчика впервые была сделана Греггом и Майо [103] для углеводородов при термической полимеризации стирола (см. табл. 28). Их исследования ограничивались главным образом ароматическими и алицикличе-скими углеводородами, так как в линейных алифатических углеводородах полистирол нерастворим. Было установлено, что бензол и циклогексан сравнительно не активны в реакциях передачи цепи например 15-кратное разбавление стирола бензолом приводит к уменьшению ОР полимера, полученного при 60°, только на 25%. Далее, низкая константа передачи цепи для грет-бутилбензола указывает на низкую активность атомов водорода в алифатической группе. Большую активность бензильного атома водорода и влияние увеличения числа заместителей хорошо иллюстрируют константы передачи цепи в ряду толуол, этилбензол, изопропилбензол и грет-бутилбензол. Возрастание константы в ряду дифенилметан, трифенилметан и флуорен указывает на большое значение резонансной стабилизации радикала, образующегося в реакции передачи цепи (ср. стр. 199—200). Можно заметить, что во всем ряду углеводородов, перечисленных в табл. 28, увеличение активности сопровождается уменьшением энергии активации. [c.272]

    Фенокси-анионы окисляются легче недиссоциированных фенолов. По данным вольтамперометрии эти реакции относятся скорее к одноэлектронным, а не к двухэлектронным. Вермиллион и Перл [6] изучали окисление аниона ванилина (IV). Этот анион был выбран потому, что окисление феноксидов с меньшим числом заместителей обычно сопровождается полимеризацией. В ацето-нитриле на платиновом электроде наблюдаются волны при - -0,22 В и при 0,56 В отн. нас. к. э. Препаративный электролиз (IV) приводит к дегидродиванилину (V). Предполагают, что реакция протекает через стадию одноэлектронного окисления до нейтрального радикала, который затем димеризуется  [c.237]

    Для объяснения вышеизложенного В. В. Коршак указал на влияние пространственных затруднений при полимеризации, связанных с таким стереохимическим фактором, как объем замещающих ятомов и групп. Действительно, вполне вероятно, что на первом этапе реакции — активации молекул — большое влияние может оказать экранирующий эффект заместителей, пропорциональный их объему и количеству. Чем больше объем и количество заместителей, тем больше затруднений для контакта реагирующих молекул с теми атомами, между которыми образуется новая связь. Поэтому можно ожидать, что чем менее громоздки замещающие группы, тем при большем числе заместителей молекула будет способна к поли--меризации. Так, фторпроизводные этилена способны к полимеризации при всех степенях замещения, в то время как среди производных, содержащих фенильный радикал, значительно более громоздкий, чем фтор, к гтолимеризации способен только монозамещенный этилен. [c.41]

    В последние годы обнаружен принципиально новый путь синтеза регулярно построенных ненасыщенных полимеров — полимеризация циклоолефинов с раскрытием кольца. В зависимости от строения исходного циклического мономера этим способом могут быть синтезированы различные полимеры общей формулы [—СН = СН(СН2) —]р, где га—целое число, р — степень полимеризации, а вместо атомов водорода могут быть заместители различной природы (углеводородные радикалы, галогены, разнообразные функциональные группы и т. д.). Такие полимеры в соответствии с номенклатурой ШРАС принято называть полиалкенамерами [1]. [c.317]

    Полимеризация кислыми катализаторами в настоящее время находит лишь ограниченное применение. Из большого числа катализаторов этого типа [3, с. 42] в промышленности используются только каталитические системы, содержащие серную кислоту. Концентрированная N2864 была применена при синтезе первого описанного в литературе высокомолекулярного ПДМС. Полимеризация Д4 в присутствии 1—3% (масс.) Н28О4 проходит при комнатной температуре за 2—8 ч, после чего в полимер добавляют воду (около 50% от массы взятой кислоты). При этом молекулярная масса полимера резко падает, а затем в процессе выдерживания (дозревания) в течение 20—60 ч медленно возрастает до нужного значения (4- 6)-10 . Дозревший полимер отмывают от кислоты водой и сушат. Аналогично полимеризуют другие циклосилоксаны. Электроноакцепторные или стерические емкие заместители замедляют полимеризацию. [c.473]

    Скорость полимеризации дивинила, его производных и некоторых непредельных олефиновых углеводородов и их производных зависит от характера, числа и положения заместителей в цепи. Для дивинила и его гомологов эти вопросы были выяснены С. В. Лебедевым [40], который пришел к следующим выводам 1) при переме-1цении заместителей от крайних атомов сопряженной системы к средним скорость полимеризации в рядах изомеров возрастает, ири обратном перемещении—убывает 2) циклизация цепи, имеющей сопряженную систему двойных связей, повышает скорость полимеризации 3) увеличение в гомологическом ряду массы заместителей у средних атомов сопряженной системы повышает скорость полимеризации, если нагревание вести при соответствующих температурах. Эти выводы, проверенные рядом других исследователей, оказались правильными. [c.605]

    Наиболее активные в реакциях катионной полимеризации мономеры содержат электроположительные (электронодонорные) заместители при одном из углеродных атомов, соединенных двойной связью. По катионному механизму поликеризуются многие винильные соединения, в том числе изобутилен, простые виниловые эфиры, ие иолимеризующиеся по радикальному механизму. Под влиянием катализаторов катионного типа могут полимеризоЕзаться также циклические соединения. [c.135]

    Склонность к полимеризации различных галоидопроизводных этилена (отличающихся по числу и типу заместителя), а также свойства получаемых полимеров во многом зависят от радиуса атома галоида, прочности его связи с углеродом и полярности этой связи. Количественные характеристики указанных свойств приведены в табл. 13. Для сопоставления в этой же таблице указаны сведения, характеризуюи1ие атом водорода и его связь с атомом углерода. [c.252]

    Влияние заместителей связано с различным поляризующим действием их на двойную связь, что в большей или меньшей степени облегчает ее раскрытие ( 1). Поэтому несимметричные замещенные этилены проявляют ббльшую склонность к полимеризации, чем симметричные. Увеличение же числа и размеров заместителей осложняет процесс, что связано с пространственными затруднениями, возникающими при полимеризации. [c.378]

    Св-ва Ц. э. зависят гл. обр. от числа п, СЗ и типа заместителя К. Так, степень полимеризации (в среднем 150-500) значительно влияет преим. на прочностные и вязкостные св-ва Ц. э., обеспечивая их пригодность для переработки. СЗ определяет их физ.-мех. и хим. св-ва. Средняя СЗ лежит в пределах 0-3 однако чаще СЗ рассчитывают не на одно, а на 100 элементарных звеньев макромолекул целлюлозы и обозначают у (напр., для триацетилцеллюлозы у= 280-290). Регулируют СЗ изменением условий синтеза концентрации алкилирующего или этерифицирующего агента, т-ры, продолжительности и др. [c.338]

    Общая особенность в поведении ионных частиц реакции - это зависимость активности от факторов внешней (сольватация ионов, электростатический эффект противоиона) и внутренней (влияние электродонорных заместителей) стабилизации, а различие - в обратимом и необратимом характере образования ионов аренония и карбония соответственно. Следовательно, при наличии в системе более сильного, чем арен, 71-акцептора должно происходить его протонирование. Это подтверждается при использовании для инициирования полимеризации изобутилена различных комплексов присоединения протона на основе замещенных аренов, в том числе в составе полимеров стирола. [c.84]

    Сравнение результатов изучения кинетических характеристик этих мономеров полярографическим и иодометрическим метода-ми свидетельствует о том, что полярография дает идентичные результаты с иодометрией. Эти данные (табл. 20) показывают также, что винилбифенил и его производные полимеризуются быстрее стирола, что можно объяснить наличием в молекулах их большего числа сопряженных связей, чем в молекуле стирола, и, соответственно, более легким перераспределением электронной плотности, что благоприятствует более легкой поляризации двойной связи в этих мономерах. Введение заместителей в 4 -положение несколько повышает полярность молекул мономеров, что также влияет на скорость полимеризации, однако большую роль играет и характер заместителей. [c.187]

    Полимеризация лактамов [61, 62], протекающая с раскрытием цикла, осуществляется под действием ионных инициаторов. В результате полимеризации образуются линейные полиамиды. Как и в случае лактонов, способность мономеров к полимеризации существенно зависит от числа членов в цикле, от числа и расположения заместителей [63]. Пятичленный лактам (у-бутиролактам) полимеризуется по анионному механизму при низких температурах однако образующийся полиамид вновь деполимеризуется в присутствии инициаторов при 60—80°С с образованием мономера [64]. Соответствующий шестичленный лактам (б-валеролактам) также способен полимеризоваться [63]. Семичленный лактам (е-капролактам) может полимеризоваться по катионному, а также по анионному механизмам с образованием высокомолекулярных полиамидов. [c.167]

    Синтетические душистые вещества встречаются в очень многих классах органических соединений. Строение их весьма разнообразно это соединения с открытой цепью насыщенного и ненасыщенного характера, ароматические соединения, циклические соединения с различным числом углеродных атомов в цикле. Среди углеводородов вещества с парфюмерными свойствами встречаются довольно редко. Большинство душистых веществ содержат в. молекуле одну нли несколько функциональных групп. Сложные и простые эфиры, спирты, альдегиды, кетоиы, лактоны, иитропродукты — вот далеко не полный перечень классов химических соединений, среди которых разбросаны вещества с ценными парфюмерными свойствами. Для получения душистых веществ применяется самое разнообразное сырье, переработка которого основана на использовании большого числа химических процессов органического синтеза. Некоторые химические превращения приводят к введению заместителей в органические соединения нитрование, алкилирование, галоидирова-ние. К другой группе химических процессов относятся превращения, связанные с изменением функциональной группы веществ окисление, восстановление, этерификация, омыление. Третьи химические процессы приводят к изменению углеродного скелета химических веществ пиролиз, конденсация, изомеризация, циклизация, полимеризация. Ниже рассмотрены химические процессы, наиболее часто используемые в синтезе душистых веществ. [c.232]


Смотреть страницы где упоминается термин Полимеризация числа заместителей: [c.115]    [c.261]    [c.283]    [c.51]    [c.190]    [c.471]    [c.98]    [c.626]    [c.131]    [c.310]    [c.54]    [c.91]    [c.93]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризации число



© 2025 chem21.info Реклама на сайте