Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы лиотропные

    Пластинчатые мицеллы являют собой пример жидкокристаллического состояния вещества. По характеру расположения молекул они являются смектическими жидкими кристаллами, которым свойственна слоистая структура при наличии ближнего порядка упаковки молекул в слоях Такие жидкие кристаллы называют лиотропны-м и, поскольку они существуют в жидкой среде, являющейся вторым компонентом системы (тогда как обычные жидкокристаллические системы однокомпонентны). Пластинчатые мицеллы, в отличие от сферических, слабо заряжены, что обусловлено высокой степенью связывания противоионов поверхностью мицелл вследствие высокой ионной силы концентрированных растворов ПАВ.  [c.43]


    Текучесть мембраны обеспечивается сложным распределением остатков жирных кислот между молекулами различных фосфолипидов и основана на том, что все липидные бислои представляют собой лиотропные жидкие кристаллы. При температуре, характеристической для отдельных фосфолипидов, совершается фазовый переход жесткий гель — текучее жидкокристаллическое состояние. Более детально текучесть и фазовые переходы рассмотрены в разд. 25.3.3.1, [c.110]

    Известны два типа жидких кристаллов термотропные и лиотропные. Термотропные жидкие кристаллы образуются при нагревании вещества, и их можно, в первую очередь, подразделить на смектические, нематические и холестерические жидкие кристаллы (рис. 29). [c.48]

    Мы рассмотрели два основных типа полимерных жидких кристаллов — лиотропные и термотропные. Иногда к третьему типу относят образуемые блок-сополимерами суперкристаллы, структуре которых был посвящен разд. II. 4. [c.365]

    Модель аксиального анизотропного вращения использована для интерпретации экспериментальных данных по остаточному расщеплению линий ЯМР воды в гидратах слоистых силикатов [597] и упорядоченных образцах лиотропных жидких кристаллов [603]. [c.235]

    Вещества, потенциально способные находиться в жидкокристаллическом состоянии, называются мезогенными. Если форма макромолекул анизотропна, то переход от кристалла в изотропную жидкость может происходить через ряд мезофаз. Если переход происходит под влиянием тепла, то он определяется как термотропный мезоморфизм если он осуществляется под действием растворителей, то процесс описывается как лиотропный. Термотропное жидкокристаллическое состояние реализуется при нафевании мезогенных веществ выше или при переохлаждении расплава. [c.149]

    Для углеводородных растворов мыл характерен непрерывный переход от истинных (гомогенных) растворов к мицеллярным (гетерогенным) системам при повышении концентрации или понижении температуры. При этом происходит резкое изменение физико-хи-мических свойств растворов. Особенность этих систем состоит в том, что в процессе такого перехода при высоких температурах система проходит через жидкокристаллическое состояние, т. е. образует лиотропные жидкие кристаллы. [c.300]

    В зависимости от особенностей упаковки цепных молекул различают лиотропные и термотропные полимерные жидкие кристаллы [53]. Лиотропное жидкокристаллическое состояние наиболее характерно для жесткоцепных полимеров, способных к весьма специфическому фазовому расслоению. Жидкие кристаллы этого типа обычно представляют собой двух- или трехкомпонентные системы, различающиеся по типу структур на слоистые, стержневидные и кубические. В термотропном жидкокристаллическом состоянии обычно находятся линейные блок-сополимеры и гребнеобразные полимеры. Их термодинамически устойчивое мезоморфное анизотропное состояние занимает промежуточное положение по отношению к твердой и жидкой фазам. [c.30]


    Жидко-кристаллическое состояние наблюдается как в однокомпонентных, так и в двух- и многокомпонентных системах. Однокомпонентные жидкие кристаллы образуются при плавлении твердых кристаллов. Поэтому их часто называют термотропными мезофазами. Двух- и трехкомпонентные жидкие кристаллы образуются при растворении твердого кристалла в жидкости. Такие растворы называют лиотропными жидкими кристаллами. Их примером может служить раствор олеата калия в смеси спирта с водой. Физико-химические свойства жидких кристаллов зависят от природы молекул. Значительное влияние на [c.244]

    Дальнейшие исследования показали, что жидкокристаллическое состояние вещества возникает не только при нагревании, но и при растворении некоторых кристаллических веществ, например олеата аммония в смеси воды и спирта. Такие жидкие кристаллы называются лиотропными в отличие от термотропных жидких кристаллов, образующихся при нагревании. У некоторых веществ жидкокристаллическое состояние возникает лишь при переохлаждении расплава. [c.249]

    Упомянутые мицеллярные растворы сходны с лиотропными жидкими кристаллами и по достижении определенной концентрации могут образовывать мезоморфные гели. (рис. 65) с высокой [c.266]

    Лиотропные жидкие кристаллы образуются при смещении двух или нескольких соединений, одно из которых — вода или какой-нибудь другой полярный растворитель. Этот тип жидких кристаллов еще изучен слабо, хотя и предполагается, что они встречаются в живых системах. [c.49]

    Жидкокристаллическое состояние занимает промежуточное положение между аморфным (жидким) и настоящим кристаллическим состоянием. Жидкие кристаллы обладают одновременно свойствами жидкостей (текучестью) и кристаллов (анизотропией свойств), но в отличие от твердых кристаллов дальний трехмерный гю-рядок у них отсутствует. Различают термотропные жидкие кристаллы, образующиеся при термическом воздействии на вещество, и лиотропные, существующие в растворах некоторых веществ при определенных концентрациях и температуре [c.133]

    Молекулы, имеющие длинную ось вращения, удобно использовать для изучения молекулярной упорядоченности в лиотропных жидких кристаллах (в том числе полимерных), а [c.284]

    Кроме того, речь шла именно о лиотропных системах, которые не могут образоваться без растворителя. Низкомолекулярные жидкие кристаллы тоже могут быть лиотропными, но чаще бывают термотропными, т. е. образуются в результате плавления кристаллов или серии плавлений мезофаз, и дают чистые О, Г-фазовые диаграммы, не осложненные наличием растворителя. [c.352]

    XV. 2. ЛИОТРОПНЫЕ ПОЛИМЕРНЫЕ ЖИДКИЕ КРИСТАЛЛЫ [c.354]

    Не до конца ясным остается вопрос о доменах в лиотропных полимерных системах. По-видимому, эти домены существуют и в покоящихся системах, не подверженных воздействию внешних полей. Формально это можно объяснить наличием все того же особого направления, совпадающего с осью цепи, которое может рассматриваться как внутренний аналог ориентирующего внешнего поля. Ясно, что образование устойчивых доменов возможно, только если при этом понижается энергия Гиббса. В низкомолекулярных жидких кристаллах реализуется квазинепрерывная структура в статических условиях, и ориентационный дальний порядок поддерживается в достаточно больших областях, отчетливо не ограниченных (т. е. направление директора меняется плавно), ситуация меняется лишь при наложении электромагнитных полей. [c.358]

    Наиболее проста ситуация с лиотропными полимерными жидкими кристаллами, образованными жесткими макромолекулами (см. гл. XV). В отличие от низкомолекулярных жидких кристаллов такие системы, по-видимому, содержат домены той же природы, что блоки мозаики в обычных поликристаллах, даже прп отсутствии внешних полей. Для получения одноосной ориентации в такой системе достаточно развернуть эти домены механическим полем, подобно тому, как это достигается в магнитном или электрическом поле (рис. XVI. 14). Высокая ориентация достигается уже при малых X, а удаление растворителя и термообработка обеспечивают образование кристаллической структуры типа рис. XVI. 3 с высокими прочностями и модулями. [c.388]

    Обобщенная двухступенчатая модель релаксации анизотроп-но-упорядоченной воды успешно использована для интерпретации релаксационных данных на ядрах и О в растворах полимеров и биополимеров [39, 605]. В [603] релаксационные данные на ядрах Н, Ш и Ю анизотропно-упорядоченной воды в упорядоченных бислоях лиотропного жидкого кристалла интерпретируются с помощью другой теории, основанной на модели аксиального анизотропного вращения. Данная теория, первоначальный вариант которой был предложен Д. Восснером [606], позволяет объяснить наличие второго минимума на кривой зависимости Ti x ) для протонов (см. рис. 14.2). Однако, как отмечено в [591], попытка использовать только этот механизм для интерпретации данных по протонной релаксации наталкивается на серьезные затруднения. [c.237]

    Системы с пониженной размерностью. Обычные теории межмолекулярного вклада в протонную магнитную релаксацию, предложенные для трехмерных систем, не применимы для систем с пониженной размерностью, например для одномерных (Ш) или двумерных (2D) систем. Вместе с тем при исследовании структуры воды в гидрофильных объектах системы такого типа встречаются довольно часто например, вода, адсорбированная на плоской подложке, вода между плоскими пластинками слоистых силикатов или вода в плоских бислоях лиотропных жидких кристаллов — все это характерные примеры 2D-систем. Обзор теорий магнитной релаксации для систем с пониженной размерностью дан в работе [607]. Интересной особенностью неограниченных систем с пониженной размерностью является то, что для них функция спектральной плотности при малых частотах расходится и I (со- 0)->оо. Для ограниченных систем (когда величина d на рис. 14.1 конечна) расходимости при малых частотах нет, но для таких систем на кривой зависимости T i(t ) наблюдаются два минимума, соответствующие условиям (uqT 1 и (ooTiat l, где -Tiat ii /(4D, ). Детальное обсуждение экспериментальных результатов по ЯМР релаксации в ограниченных двумерных системах приведено в работе [608]. [c.237]


    Как уже упоминалось в начале этой главы, существуют и так называемые кристаллические жидкости или жидкие кристаллы, которые, будучи жидкостями, обладают, как и кристаллические вещества, анизотропными свойствами. Различают термотропные и лиотропные жидкие кристаллы. Термотропные — индивидуальные вещества, которые существуют в мезоморфном состоянии в определенном интервале температур. Ниже этого интервала вещество является кристаллом, выше — жидкостью с обычными свойствами. Примером термотропного кристаллического вещества являются параазоксианизол (в интервале температур 387,16—393,16 К)  [c.39]

    ПАВ по мере увеличения концентрации ПАВ сферич. мицеллы трансформируются в пластинчатые. М. с. обладают текучестью, характерной для той жидкости, к-рая является дисперсионной средой, и относятся к свободнодисперсным системам. При высоком содержании ПАВ М.с. переходят в свячнодисперсное состояние с образованием гелей или лиотропных жидких кристаллов. [c.97]

    Лиотропные жидкие кристаллы — это растворы некоторых веществ в определенных растворителях, например водные растворы мыл, растворы синтетических по-липецтидов в ряде органических растворителей, таких, как дихлорэтан, диоксан и др. [c.39]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    Жидкие кристаллы, получающиеся из индивидуальных веществ в определенной области температур, называют термотропными (например, метоксибензилиденбутиланилин). Лиотропные жидкие кристаллы образуются с участием растворителя (в частности, это водные растворы мыл). Если индивидуальное вещество способно образовывать и нематическую, и смектическую фазы, то при повышении температуры фазовые переходы происходят в следующей последовательности  [c.201]

    Мезоморфные состояния. Вещества, состоящие из цепных молекул, могут быть переведены в состояние, промежуточное (мезоморфное) между твердым и жидким. При плавлении или растворении таких веществ получают жидкие (по агрегатному состоянию) системы, но характеризующиеся анизотропией свойств, что является признаком кристаллического состояния вещества. Поэтому такие системы называют жидкими кристаллами. Различают жидкие кристаллы термотропные, полученные нагреванием твердых кристаллов, и. лиотропные, образовавшиеся в результате растворения вещества. По структуре (рис. 31) жидкие кристаллы могут быть нематическими (от греч. nema — нить) и смектическими (от греч. sme ta — мыло). В последнем случае кроме продольной ориентации молекул явно выражено их [c.87]

    Совместно с Ельяшевич [239] нам удалось сформулировать условия возникновения порядка в системах полимер — растворитель в цепях с ограниченной вращательной подвижностью, характеризуемой параметром Флори /. Хотя речь идет о давней работе и мы пользовались еще более давней теорией Флори, основанной на выражении для энергии Гиббса системы полужесткий полимер — растворитель, включающей параметр гибкости / и основанной на решеточной модели, мы полагаем, что этот подход поучителен и сохранил значимость до настоящего времени, хотя многие детали теории изменились. К тому же цитированные работы были в свое время восприняты как нетипичный курьез и сейчас полузабыты, тогда как за истекшее время выяснилось, что многие полужесткоцепные полимеры, и в первую очередь биополимеры, способны к образованию бинарных упорядоченных форм, и простое сопоставление энергий Гиббса позволяет выяснить, которое из состояний предпочтительнее аморфное, мезоморфное или кристаллическое. Приводимый ниже анализ имеет значение и для гл. XV, ибо лишь сравнительно недавно способность некоторых лиотропных полимерных жидких кристаллов превращаться в студневидные или жесткие кристаллосольваты была переоткрыта . [c.340]

    По-видимому, этих осложнений удалось бы избежать при одноосной ориентации -/ ,/ -полимеров, кристаллизуя их из смектического состояния с вытянутыми цепями. Как явствует из гл. XV, из термотропных полимерных жидких кристаллов вряд ли можно столь же просто получить волокна, как из лиотропных причина тому — топоморфизм и связанные с ним кажущиеся необратимости. Переход к выгодным топомерам надо совершать так же, как и в случае обычных гибкоцепных полимеров, т. е. используя принципы ориентационной кристаллизации или вытяжки (еще в жидкокристаллическом состоянии). [c.389]

    Лиотропные жидкие кристаллы формируются под совместным действием полярных растворителей, таких как вода, либо обычных поляризующих растворов, таких как желатин в воде, и амфифильных соединений (ПАВ). Подобные лиотропные жидкие кристаллы образуются в определенных условиях фазового пространства (концентрация растворителя, концентрация раствора, температура). Термотропные жидкие кристаллы формируются в определенных температурных интервалах. Те, которые образуются при температурах выше температуры плавления кристаллической фазы, называются энантиотропными, а формирующиеся при температурах ниже температуры плавления — монотропными. Амфотронные ПАВ, такие как мыла, образуют как лиотропную, так и термотропную жидкокристаллические фазы. [c.147]

    В монографии обсуждаются физические свойства жидких растворов. Наряду с растворами веществ, состоящих их молекул-шариков, современная физика изучает свойства растворов веществ, молекулы которых имеют форму палочек (лиотропные жидкие кристаллы), и растворов полимеров, молекулы которых по.хожи на длинные гибкие нити. [c.2]

    Рассмотрены закономерности растворимости, различные фазы и фазовые равновесия растворов низкомолекулярных веществ, растворов полимфов и лиотропных жидких кристаллов, особе1 ности набухания лиотропных жидких кристаллов и полимеров. [c.2]


Библиография для Кристаллы лиотропные: [c.79]   
Смотреть страницы где упоминается термин Кристаллы лиотропные: [c.16]    [c.16]    [c.345]    [c.112]    [c.89]    [c.352]    [c.353]    [c.356]    [c.357]    [c.458]    [c.440]   
Физическая и коллоидная химия (1988) -- [ c.48 , c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Анизотропия свойств лиотропных жидких кристаллов

Двух компонентные системы из воды и амфифила. Нематические лиотропные жидкие кристаллы

Жидкие полимерные кристаллы лиотропные

Исследование лиотропных жидких кристаллов и жидкокристаллических слоев

Ламеллярные фазы лиотропных жидких кристаллов

Лиотропный ряд

Модули упругости нематических лиотропных жидких кристаллов

Получение лиотропных полипептидных жидких кристаллов

Текстуры лиотропных жидких кристаллов

ели лиотропных жидких кристаллов



© 2025 chem21.info Реклама на сайте