Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мезофаза

    На поверхности воздух — вода фосфолипидные молекулы образуют мономолекулярную пленку, обращенную головками к воде и хвостами в воздух. При увеличении концентрации липидов часть молекул уходит в глубь воды, где при достижении определенной критической концентрации мицеллообразования образуются различные жидкокристаллические структуры — кубическая, гексагональная или ламеллярная [423]. Общий принцип построения этих структур заключается в том, что полярные головки стремятся контактировать с водой, а углеводородные хвосты— друг с другом. Реализация той или иной мезофазы зависит от концентрации липида в системе, температуре, pH и ионной силы раствора. [c.148]


    Основным ( ктором воздействия добавок считают их химический состав (при постоянном расходе добавок). Установлено, что парафиновые углеводороды практически не влияют на коксуемость углей, а вещества, в состав которых входит кислород (фенольные или хинонные группы, гетероциклы) ухудшают коксуемость шихт. Азот и азотсодержащие соединения не способствуют повышению коксующих свойств углей. В то же время высококонденсированные вещества типа асфальтенов, которые в больших количествах содержатся в каменноугольном пеке и тяжелых остатках переработки нефти, улучшают коксуемость, отмечается, что спекающие добавки эффективны в том случае, если содержат асфальтенов ( -фракция) не менее 30—40%, карбидов ((Х-фракция) не более 30—40% и имеют выход летучих вешеств не выше 50—55%. Учитывая, что зарождение и образование мезо эы связано с наличием в пластической массе определенного типа соединений (структур) к наиболее эффективным добавкам относят продукты, имеющие в своем составе зародыши мезофазы или образующие ее при кар -низации. Эффективность действия добавок зависит Также от спекающих свойств углей. Ввод добавок к углям, обладающим достаточной спекаемостью (Ж, К, КЖ) не приводит к какому-либо заметному положительному эффекту. Для углей низкой спекаемости (Г, ОС, СС) и неспекающихся (Т, Д) действие добавки весьма ощутимо. [c.215]

Рис. 51. Изотермы образования мезофазы в процессе коксования при Р=0,1 МПа дистиллятного крекинг-остатка (а) и гудрона (б). Рис. 51. Изотермы образования мезофазы в <a href="/info/1115151">процессе коксования</a> при Р=0,1 МПа дистиллятного крекинг-остатка (а) и гудрона (б).
    Сложную структурную единицу, формируемую на промежуточной стадии перехода ассоциата в кристаллит, авторы работы [144 назвали промежуточной структурной единицей (мезофазой), которая состоит из нескольких ориентированных определенным об- [c.13]

    Введение в неструктурированную систему специальных наполнителей, например асфальтенов, смол, полициклических ароматических углеводородов, мезофазы, парафинов, карбенов, кар-бондов, извлеченных из нефти или из продуктов ее переработки, а также наполнителей не нефтяного происхождения. [c.33]

    Оптимальные условия для получения нефтяного углерода создаются при средних температурах коксования (450—480°С), когда скорости реакций деструкции и уплотнения, обусловливающие образование зародышей кристаллизации, соизмеримы с кинетикой роста мезофазы (см, с, 174). Повышение давления в системе и коэффициента рециркуляции сырья обычно способствует увеличению выхода, а также размеров кристаллитов сырых нефтяных [c.148]


    Впервые продукт межмолекуляр-пого взаимодействия, обладающий специфическими свойствами, обнаружили при коксовании каменноугольной смолы Брукс и Тейлор они назвали его мезофазой [144]. Эти исследователи, а затем Федосеев [129] и Гимаев [30] показали, что в результате термообработки каменноугольных и нефтяных пеков ири температурах выше некоторой критической в однофазной массе появляются анизотропные микросферы мезофазы размером 0,1—20 мкм. Сферическая форма вызвана действием сил поверхностного натяжения. Эти микросферы обладают способностью к изменению своих размеров. [c.171]

    Темпцжтура. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, но и регулировать соотношение между скоростями распада и уплотнения, а также, что особенно важно, между скоростями реакций поликонденсацни, тем самым меняя свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию в зависимости от целевого назначения процесса. Для получения кокса с лучшей упорядоченностью структуры коксования сырья целесообразно проводить при оптимальной температуре. При пониженных температурах из-за малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые препятствуют дальнейшим реакциям уплотнения и форхшрованию мезофазы. При температурах выше оптимальной скорости реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средних (оптимальных) температурах коксования ( 480 С), когда скорости реакций деструкции и уплотнения соизмеримы со скоростью роста мезофазы. Коксующийся слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.63]

    Работа [159] посвящена исследованию структур ассоциатов (по терминологии авторов) асфальтенов, их физических и химических свойств. Изучены переходы в анизотропную фазу в тяжелых нефтепродуктах нри их нагреве до 400—500 °С. При нагревании наблюдается образование мезофазы с размерами порядка микрон. [c.108]

    Исходя из теоретических предположений расчетным путем установлено, что прочность твердых тел, в которых действуют ван-дер-ваальсовы силы примерно в 50—100 раз меньше, чем для тел, в которых взаимодействия основаны на валентных связях. Приближенная оценка прочности фазовых контактов в процессе коксования нефтяного сырья основывается на следующих представлениях взаимодействие частиц мезофазы развивается постепенно от коагуляционных контактов к фазовым с последующим образованием коксового скелета. Оценка прочности коагуляционного контакта, обра овапного в результате действия даль-нодействующих сил, между двумя частицами, соприкасающимися острыми ребрами с радиусами кривизны порядка микрон р[ = = (Л /-)/(12 2) (/4 —сложная константа Гамакера с учетом среды, г — радиус кривизны, /г — расстояние между частицами) дает величину р1<10 И. [c.179]

    Полициклические арены способны к образованию иглоподобных или пластинчатых структурных элементов. Надмолекулярные структуры, образующиеся на первом этапе (мезофаза), отличаются от изотропной массы большей упорядоченностью, плотностью, характером растворимости в растворителях. [c.235]

    Вещества, потенциально способные находиться в жидкокристаллическом состоянии, называются мезогенными. Если форма макромолекул анизотропна, то переход от кристалла в изотропную жидкость может происходить через ряд мезофаз. Если переход происходит под влиянием тепла, то он определяется как термотропный мезоморфизм если он осуществляется под действием растворителей, то процесс описывается как лиотропный. Термотропное жидкокристаллическое состояние реализуется при нафевании мезогенных веществ выше или при переохлаждении расплава. [c.149]

    Нагревание пеков до температур 390 - 425 С приводит к тому, что в них образуется новая фаза. Это так называемая мезофаза, обладающая свойствами жидких кристаллов. [c.15]

    Проведенными за последние два десятилетия специальными (спектральными, микроскопическими идр.) исследованиями (Брукса, Тейлора, Уайта, Хонда, Сюняева З.И. и Гимаева Р.Н.) в продуктах карбонизации органических полимеров, нефтяных и каменноуголь— ных пеков, ароматизированных дистиллятных нефтяных остатков были обнаружены анизотропные микросферические структуры раз — мером 0,1 — 20 мкм, обладающие специфическими свойствами жид — ких кристаллов и получившие название мезофазы. Это открытие име( т исключительно важное научное и практическое значение и позволяет более точно установить механизм жидкофазного термо — лиза нефтяного сырья. Мезофаза представляет собой слоистый [c.39]


    При термолизе ТНО растворитель служит не только диспер — сионной средой, но и является реагирующим компонентом. К тому же сами асфальтены полидисперсны не только по молекулярной массе, но и по растворимости в данном растворителе. В связи с этим в ходе жидкофазного термолиза непрерывно изменяются химичес — кий состав и растворяющая способность дисперсионной среды. По мере уплотнения и насыщения раствора асфальтенами в первую очередь будут выделяться наиболее высокомолекулярные плохорас -творимые асфальтены, а затем — асфальтены с более совершенной структурой, мезофаза и кокс. [c.40]

    При наличии избытка углеводородов происходит образование капельной эмульсии, стабилизация которой достигается адсорбцией эмульгатора из водного раствора с образованием мономоле-кулярного адсорбционного слоя, препятствующего коалесценции капель. При этом на границе раздела фаз возможно формирование жидко-кристаллических структур (мезофаз), сопровождающееся скачкообразным повышением вязкости и одновременно повышением агрегативной устойчивости системы [24—27]. Считают, что избыток эмульгатора над адсорбционным слоем на поверхности капель образует мицеллярную структуру, обладающую вязкоэластичностью и эффектом самоотверждения. Подобное поведение эмульсионных систем объясняется квазиспонтанным образованием на границе раздела фаз углеводородный раствор — ПАВ термодинамически устойчивых ультрамикроэмульсий прямого и обратного типов, что, по-видимому, оказывает основное влияние на обеспечение агрегативной устойчивости таких систем. [c.146]

    Проведенными за последние два десятилетия специальными (спектральными, микроскопическими и др.) исследованиями (Брукса, Тейлора, Уайтта, Хонда, Р.Н.Гимаева, З.И.Сюняева и др.) в продуктах карбонизации органических полимеров, нефтяных и каменноугольных пеков, остатков и индивидуальных ароматических углеводородов были обнаружены анизотропные микросферические структуры размером 0,1 - 20 мкм, обладающие специфическими свойствами жидких кристаллов и получившие название мезофазы. Это открытие имеет исключительно важное научное и практическое значение и позволяет более точно установить механизм термодеструктивных превращений нефтяного сырья. Мезофаза представляет собой слоистый жидкий кристалл, состоящий преимущественно из конденсированных арома- [c.57]

    Пеки могут находиться в изотропной и анизотропной фазах, которые характеризуются разными физико-химическими свойствами. Обычно плотность анизотропной фазы (мезофазы) — 1350— 1400 кг/м — всегда выше плотности изотропной фазы—1250— 1320 кг/м . Различие в свойствах анизотропной н изотропной фаз обусловливает их неодинаковую способность к расслоению н в дальнейшем к формированию из анизотропной фазы нефтяного углерода, Чем легче проходят процессы зарождения, роста, сранц -вания н видоизменения микросфер, тем выше волокнистость и графитируемость получаемых углеродов. [c.171]

    На рис. 50 показана динамика образования сфер мезофазы в процессе коксования деасфальтизата при 460 °С [30]. Измерением полей аншлифов под микроскопом была определена доля мезофазы при различных условиях термодеструкцин нефтяных остатков (рис. 51) дистиллятного и остаточного происхождения, различающихся степенью пространстве ного расположения молекул. Доля мезофазы в остатке зависит от температуры и длительности термодеструкции. С повышением двумерной упорядоченности сырья (дистиллятный кре синг-остаток), температуры (до определенного [c.173]

    В случае пространственной конфигурации молекул (гудрон) доля мезофазы прн тех. же условиях меньше она несколько повышается с увеличением давления (до 0,5 МПа) в системе. Для тех же видов остатков на рис. 52 показано изменение грунновых компонентов в процессе коксования. Из рисунка видно, что значения пороговой концентрации асфальтенов, после достижения которой начинается интенсивное карбоидообразование, для остатков различного происхождения неодинаковы. При более высоких температурах пороговая концентрация асфальтенов достигается в случае меньшей длительности нагрева остатков в системе. [c.174]

    Подвижность ассоциатов в процессе термодеструкцин в значительной мере зависит от свойств дисперсионной среды. Для форми-раваиия из микросфер крупных сфер мезофазы необходимо сократить влияние диффузионных факторов, обеспечить подвод к микро-сфера.м полициклических ароматических структур и создать одновременно возможность слияния этих микросфер в более крупные. [c.174]

    Влияние температуры и длительности коксования на коице1гг-рацию ПМЦ в коксующейся массе (деасфальтизате) показано на рис. 58. Наличие относительного постоянства концентрации ПМЦ в температурном интервале 440—460 °С объясняется, по-видимому, интенсивными межмолекулярными взаимодействиями на этом участке, приводящими к формированию мезофазы и сопровождающимися интенсивной рекомбинацией свободных радикалов. [c.190]

    При внесении в шихту для коксования оптимальных по качеству добавок органических веществ, обычно пеков или масел (при соответствующем их расходе), можно повысить спекаемость углей и шихт. Механизм действия органических добавок может быть в общем представлен в следующем виде. При нагреве углема-слявой смеси до температур, при которых еше не начинается термическое разложение угля, добавки распределяются по поверхности угольных зерен и частично адсорбируются ими. В период пластического состояния молекулы добавки проникают в межмолекулярное пространство изменяющегося вещества угля и способствуют повышению макромолекулярной подвижности по механизму внешней пластификации. Молекулы жидкой добавки раздвигают молекулы образовавшихся продуктов расщепления угля и затрудняют их взаимодействие в процессе поликон-денсации. Одновременно добавки участвуют в реакциях водородного перераспределения, в результате которого перенос водорода добавок к реагирующим молекулам (радикалам) угля приводит к стабилизации и, как следствие, увеличению количества веществ со средней молекулярной массой, образующих жищсую. фазу пластической массы. Кроме того, наличие вещества добавки повышает концентрацию в пластической массе жидкоподвижных продуктов. В результате возрастает количество, текучесть и термостабильность пластической массы, улучшаются условия формирования пластического контакта остаточного вещества угольных зерен и зарождения новой промежуточной фазы (мезофазы), с которой связывают развитие упорядоченной углеродистой (оптически анизотропной) структуры полукокса-кокса. [c.215]

    В результате экспериментов было разработано больиюе количество методик получения фуллеренов путем испарения графитового стержня, опйсаниых в [2]. Кроме графита, можно использовать и жидкокристаллическую мезофазу, которая образуется в результате пиролиза многих углеродосодержащих соединений при температурах 370-500 °С. [c.10]

    Мезофаза обладает свойствами жидкостей (большая текучесть, способность находиться в каплевидном состояш1и, слияние капель при соприкосновении) и свойствами кристаллических тел (упорядоченность молекул). С увеличением температуры и продолжительности термообработки в реакционной массе происходит увеличение доли мезофазы, частицы последней коалесцируют. В конечном итоге весь пековый материал, не содержащий свободный углерод, переходит в жидкокристаллическое состояние и легу-чие продукгы. При дальнейшем увеличении температуры и продолжительности термообработки происходят процессы вспучивания и затвердевания мезофазы. Таким образом, в период мезофазного превращения закладываются основные структурные особенности, определяющие свойства углеродных материалов. [c.15]

    Столоногов И.И. Влияние размеров и природы частиц мезофазы на формирование структуры нефтяного кокса. Автореф. дисс... канд. техн. наук. М. МИНХ и ГП, 1983. [c.79]

    Практическое решение вопроса получения из пеков УВ с высокими упруго-прочностными характеристиками связано со способностью расплава пеков при термообработке переходить в жидкокристатлическое (анизотропное) состояние с образованием упорядоченных участков струкг ры -так называемой мезофазы. При протягивании расплава мезофазного пека через фильеры происходит ориентация структурных элементов мезофазы [c.65]

    Химический состав и свойства пеков изменяются в широких пределах в зависимости от природы исходного сырья и технологических условий. В определенных условиях в пеках может зарождаться и расти жидкокристаллическая фаза (мезофаза), которая обеспечивает образование анизотропного графитирующегося кокса. В связи с этим в настоящее время различают пеки изотропные (обычные, немезофазные) и анизотропные (мезофазные). [c.89]

    При низкотемпературной карбонизации (550 - 650°С) происходит переход мезофазы в твердый полукокс. Этот процесс сопровождается вспучиванием под действием вьщеляющихся газов, что ведет к образованию мелко-пористой структуры кокса. При вспучивании происходит глубокая деформация кокса и уъеличение числа дефектных структур, что при последующей термообработке приводит к возникновению усадочных трещин. [c.89]

    При эволюции ПС могут образоваться, как минимум, два вида карбенов, если последние рассматривать как ПС с выродившимися сольватными оболочками за счет полимеризационного перехода из нее в ядро молекул асфальтенов. Первый вид - это анизотропный карбен (рис. 1.16), который получается, когда ПС образована голоядерными структурами. В отсутствие длинных алкильных заместителей асфальтены в ядре будут связываться за счет спин-спинового и я-взаимодействия, что способствует росту ядра в направлении оси "С" графитовой структуры. Утонение сольватной оболочки до слоя диамагнитных молекул соответствует моменту образования карбенов, коллективное состояние которых может быть отнесено к так называемым полимерным жидким кристаллам, которые в последнее время обнаружены и интенсивно исследуются [51,52]. Различие в размерах карбенов и их молекулярном весе не может препятствовать образованию мезофазы. Такая возможность показана в работе [53]. Образование вторичной мезофазы в нефтяных дисперсных системах обнаружено в работе [54] при термолизе. Такие карбены приводят к образованию волокнистого нефтяного углерода, как это, например, показано в работе [c.45]


Смотреть страницы где упоминается термин Мезофаза: [c.40]    [c.42]    [c.43]    [c.44]    [c.58]    [c.60]    [c.61]    [c.63]    [c.64]    [c.26]    [c.14]    [c.173]    [c.173]    [c.174]    [c.11]    [c.14]    [c.66]   
Смотреть главы в:

Закономерности развития сложных систем в процессах карбонизации остаточных продуктов нефтехимпереработки -> Мезофаза


Нефтяной углерод (1980) -- [ c.0 ]

Нефтяной углерод (1980) -- [ c.0 ]

Химический энциклопедический словарь (1983) -- [ c.201 ]

Жидкокристаллический порядок в полимерах (1981) -- [ c.0 ]

Сверхвысокомодульные полимеры (1983) -- [ c.193 ]

Жидкокристаллический порядок в полимерах (1981) -- [ c.0 ]

Химия привитых поверхностных соединений (2003) -- [ c.42 ]




ПОИСК







© 2025 chem21.info Реклама на сайте