Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрофотометр для инфракрасной области

    Методы, основанные на взаимодействии излучения с веществом. Большое значение имеют различные оптические методы анализа. Измерение поглощения света является основой фотометрии. Различают две группы фотометрических методов колориметрию и спектрофотометрию. В колориметрии сравнивают окраску исследуемого раствора с окраской стандартного раствора. В спектрофотометрии определяют спектр поглощения вещества (раствора) или измеряют светопоглощение при строго определенной длине волны. Как чисто физический метод, фотометрия применяется для анализа растворов красителей, для определения окрашенных окислов азота в газах и т. п. Измерение поглощения в ультрафиолетовой и в инфракрасной частях спектра позволило распространить эти методы на многие бесцветные растворы, не поглощающие света в видимой области. Таким путем анализируют сложные системы, содержащие органические вещества, например различные фракции перегонки нефти, витамины и др. физиологически активные вещества. Измерение поглощения в инфракрасной области используется, кроме того, для определения мути в растворах, пыли в газах. [c.18]


    В практической спектрофотометрии измерения поглощения проводят в спектральной области, которую принято делить на 3 части ультрафиолетовая, видимая и инфракрасная области спектра. Единицей измерения длин волн в ультрафиолетовой части спектра в практической спектрофотометрии обычно служит нанометр (1 нм = 10 см). Ультрафиолетовая область спектра расположена в интервале длин волн 200— 400 нм, видимая область — в интервале длин волн 400—700 нм. Наконец, инфракрасная область спектра начинается примерно с 700 нм. В инфракрасной области спектра единицей измерения длин волн служит микрон (1 мк = 10- см). Очень часто инфракрасное излучение характеризуется волновым числом -V, у= 1Д (где X выражено в см), размерность V соответственно см Например, длина волны 2 лк соответствует волновому числу 5000 слг . Имеются специальные таблицы пересчета волновых чисел в длины волн. Наиболее доступная инфракрасная область расположена в интервале 0,7—20 мк, более длинноволновая область инфракрасного спектра малодоступна и практической спектрофотометрией пока не используется. [c.245]

    Спектрофотометрия основана на поглощении монохроматического света, т. е. света определенной длины волны (1—2 нм) в видимой, ультрафиолетовой и инфракрасной областях спектра. [c.48]

    В спектрофотометрических методах применяют сложные приборы - спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений с помощью избирательного поглощения монохроматического света в видимой, ультрафиолетовой или ближней инфракрасной областях спектра. Поскольку спектр поглощения каждого вещества имеет вполне определенную форму, спектрофотометр может быть применен как для качественного, так и для количественного анализа. [c.184]

    Калия бромид ИК. Бромид калия Р, который выдерживает следующее испытание ИК-спектр диска, приготовленного, как описано в методе 3 в разделе Спектрофотометрия в инфракрасной области спектра (см. с. 45), с бромидом калия Р, предварительно высущенным при 250 °С в течение 1 ч, имеет в основном плоскую базовую линию в области 4000—650 см максимальное поглощение составляет не более 0,1 выще базовой линии, за исключением максимумов, обусловленных присутствием воды при 3440 и 1630 см . [c.204]

    Назвать достоинства и недостатки спектрофотометрии в инфракрасной области спектра. [c.183]

    Для каждой узкой фракции рассчитывали эмпирическую формулу и определяли гомологический ряд, на основании которых можно сказать, что гомологи бензола фракции 180—200 °С представлены в основном углеводородами состава Сэ—Сю. Узкие ароматические фракции исследовали по спектрам поглощения в ближней ультрафиолетовой области 290—330 ммк. Но так как даже в узких фракциях ароматических углеводородов, выделенных из широких фракций нефти по спектрам поглощения в ближней ультрафиолетовой области, можно лишь ориентировочно определить структурные подгруппы, все фракции снимали и в инфракрасной области 1000—650 см- т. е. в области полос поглощения неплоских деформационных колебаний СН-групп. Положение этих полос определяется прежде всего расположением, а не природой заместителей. С некоторыми ограничениями они являются превосходным средством для распознавания типа замещения. Спектр поглощения в ультрафиолетовой области снимали на кварцевом спектрофотометре СФ-4 в растворах изооктана. Спектры поглощения одиннадцати исследованных фракций представлены на рис. 1 а, б, в) [10—14]. [c.29]


    СПЕКТРОФОТОМЕТРИЯ В ИНФРАКРАСНОЙ ОБЛАСТИ СПЕКТРА [c.45]

    Молекулярный абсорбционный анализ основан на поглощении электромагнитных излучений молекулами или сложными ионами в ультрафиолетовой, вй-димой или инфракрасной областях спектра. К это группе методов относят спектрофотометрию, колориметрию и ИК-спектроскопию. [c.294]

    Разработаны методы определения СО, в газовой фазе по поглощению энергии электромагнитных колебаний в инфракрасной области. В этом случае СО2 не фиксируется раствором щелочи, а непосредственно почвенный воздух прокачивают через кювету инфракрасного спектрофотометра и по интенсивности полосы поглощения СО оценивают его содержание в воздухе. Дыхание почвы — хороший показатель, но надо помнить, что эмиссия 0 весьма динамична и меняется не только по сезонам года, но и в течение суток (суточная динамика), а также с изменением погодных условий. [c.221]

    Спектры поглощения в инфракрасной области снимали на двухлучевом спектрофотометре ИКС-14 без растворителя, в кювете толщиной 0,111 мм. Окно в канале сравнения изготовлено из хлористого натрия. Спектры поглощения в инфракрасной области некоторых исследованных фракций (табл. 2) приведены на рис. 1—6. [c.29]

    В результате проведенной работы авторы пришли к выводу о возможности суммарного определения ароматических углеводородов, в бензинах с мало меняющимся соотношением содержания ароматических компонентов по поглош ению в ближайшей инфракрасной области. Для указанной цели пригоден упрощенный фильтровой спектрофотометр. Время анализа составляет несколько минут, что выгодно отличает этот метод от химических методов. В сочетании с непрерывной записью метод может быть использован для непрерывной регистрации выхода продуктов в процессе производства. [c.562]

    Для спектрального анализа в инфракрасной области требуется относительно небольшая проба — 5 мкг в твердом виде и 50 мкг в растворе. Чувствительность повышается при использовании методов, основанных на преобразовании Фурье, при этом достаточно всего 0,05 мкг пробы. Этот метод анализа прекрасно дополняет данные, полученные на масс-спектрометре, и дает информацию о функциональных группах, а иногда и о структуре вещества. Имеется несколько приемов, позволяющих анализировать разделенные на хроматографе вещества с помощью ИК-спектрофотометра. Наиболее простым является концентрированно на таблетке КВч. Собранную с хроматографа и упаренную до 1—2 капель фракцию наносят микрошприцем на 5—10 мг порошка бромида калия, причем каждую новую порцию раствора выпаривают на таблетке, пропуская сухой ток инертного газа. [c.172]

    Спектрофотометрия, как и фотометрия, относится к абсорбционному анализу, основанному на поглощении света определяемым веществом в видимой, ультрафиолетовой и инфракрасной областях спектра. Она также основана на законе Бугера, т. е. на принципе существования пропорциональной зависимости между светопогло-щением и концентрацией поглощающего вещества. Однако в спек-трофотометрии анализ осуществляется по светопоглощению монохроматического света, т. е. света определенной длины волны. [c.140]

    Кварцевым спектрофотометром СФ-4 (или СФ-4А) измеряют оптическую плотность или светопропускание и снимают спектры поглощения жидких и твердых прозрачных веществ в диапазоне длин волн 220—1100 ммк, т. е. в ультрафиолетовой, видимой и ближней инфракрасной областях спектра. Прибор состоит из а) монохроматора с кварцевой призмой, поворотом которой на выходную щель монохроматора направляется свет желаемой длины волны б) усилителя с отсчетным устройством, с помощью которого измеряется интенсивность монохроматического излучения, прошедшего через кюветы в) стабилизатора напряжения, обеспечивающего стабильность ультрафиолетового светового потока, излучаемого водородной лампой. [c.83]

    Спектрофотометры, которые предназначены для измерений в инфракрасной области спектра, обычно называют спектрометрами. [c.257]

    Иногда из-за ограниченной прозрачности или дисперсии материала не удается охватить всю нужную область спектра. Тогда делают приборы со сменной оптикой. Так инфракрасные спектрофотометры снабжаются набором сменных призм и других оптических деталей, что дает возможность с помощью одного прибора работать по всей ближней инфракрасной области. В приборах с кварцевой оптикой часто имеется сменная стеклянная призма для увеличения дисперсии при работе в видимой области. [c.99]

    Общепризнано, что спектрофотометрия в инфракрасной области спектра представляет собой наилучший метод идентификации вследствие уникальности четко выраженной фингерпринт-ной области спектра для данного лекарственного вещества. [c.12]

    В инфракрасной области спектра в качестве источника сплошного излучения применяют твердые тела при температуре 1000—1500°. В отечественных спектрофотометрах используются в основном силитовые стержни (штифты Глобара) (рис. 164). При пропускании тока через стержни они разогреваются и начинают интенсивно светиться. Применяют и другие типы стержней. Примерный спектр свечения стержня приведен на рис. 163, б. [c.299]


    Лучшие образцы современных УФ-спектрофотометров работают в области от 185 до 850 нм. Нижний предел определяется качеством оптической системы и интенсивностью источника излучения. Для снятия спектров ниже 200 нм оптика прибора должна быть изготовлена из специального кварца, а монохроматор при работе продувают сухим азотом, чтобы устранить сильное поглощение кислорода и паров воды в этой области. Длинноволновая граница прибора определяется чувствительностью детектора. В некоторых приборах ставят дополнительный сменный детектор (обычно фотосопротивление), что позволяет использовать такой спектрофотометр в ближней инфракрасной области (до [c.15]

    Приборы, применяемые для инфракрасной спектроскопии. В исчерпывающем обзоре Вильямса [481 описан ряд приборов для получения спектров в инфракрасной области, а также изложены общие методические положения. В обзоре Шеппарда [391 содержится описание более поздних усовершенствований. Поэтому здесь приборы подробно не рассматриваются. Обычно инфракрасный спектр получается пзггем пропускания через вещество излучения горячего тела с последующим -изучением прошедшей энергии для определения той ее части, которая поглощается веществом. На рис. 1 приведена простая схема типового однолучевого регистрирующего инфракрасного спектрофотометра. Он состоит из источника радиации, чаще всего раскаленного штифта из окислов металлов или карбида кремния, нагреваемого электрическим током. Сферическим зеркалом излучение фокусируется на входную щель 3 , впереди которой устанавливается кювета, содержащая вещество. Коллиматорное зеркало делает пучок параллельным, после чего он дважды проходит через призму назад на [c.313]

    Для контроля качества хлоргидрата пиридоксина и определения примесей его метилового эфира были сняты спектры в инфракрасной-области на спектрофотометре ИКС-11 [54]. В спектре (рис. 21) хлоргидрата пиридоксина имеются полосы поглощения при 1215 и 1100 ju i (деформационные колебания ОН фенольного и спиртового гидроксилов). В спектре метилового эфира пиридоксина установлена дополнительно полоса в 1050 см , характерная для колебаний СО эфирной связи. Разработан также метод анализа при помощи восходящей распределительной [c.168]

    A. Проводят испытание, как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Инфракрасный спектр поглощения соответствует спектру, полученному со стандартным образцом никотиновой кислоты СО, или спектру сравнения никотиновой кислоты. [c.27]

    Уменьшение интенсивности света в результате его поглощения растворами обычно выражают величиной оптической плотности, которую измеряют на фотоэлектроколориметрах, сиектрофометрах и других приборах (см. гл. 15). Спектрофотометры позволяют также получить спектры поглощения исследуемых растворов в видимой, ультрафиолетовой и инфракрасной областях спектра и установить, какие участки спектра поглощаются наиболее сильно, т. е. где расположены максимумы поглощения. Для многих растворов спектры поглощения являются очень специфичной качественной характеристикой, так как указывают на наличие и природу определенных атомных группировок. [c.391]

    Сероуглерод И К. Сероуглерод Р, который выдерживает следующее испытание инфракрасный спектр реактива в слое толщиной 1,0 мм, как описано в методе 4 в разделе Спектрофотометрия в инфракрасной области спектра (см, с. 45), в области 4000—670 см имеет поглощение менее 0,1 в областях 4000—3030 см , 2635—244 m , 2000—1755 см и 1265—935 см и поглощение менее 0,17 в области 800—715 см-.  [c.231]

    Спектрофотометры для инфракрасной области спектра к основном аналогичны приборам для видимой и ультрафиолетовой областей они могут отличаться источником энергии оптическими материалами, детекторными устройствами. Кроме того, в некоторых приборах монохроматор может располагаться между испытуемым веществом и детектором. [c.46]

    A. Проводят определение, как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Инфракрасный спектр соответствует спектру, полученному со стандартным образцом бетаметазона СО, или спектру сравнения етаметазона (для получения одинаковой кристаллической формы может потребоваться перекристаллизация из хлороформа испытуемого вещества и стандартного образца). [c.58]

    А. Проводят определение, как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Инфракрасный спектр соответствует спектру сравнения амодиахина гидрохлорида. [c.37]

    Для снятия ИК-спектров в ближней инфракрасной области можно модифицировать обычные инфракрасные спектрофотометры, заменив в них призму ЫаС1/КВг на призму из плавленного оксида кремния, кварца, фтористого лития или кальция и добавив более чувствительный детектор. Многие промышленные УФ-ВИ-спектро-фотометры сконструированы таким образом, что позволяют исследовать и ближнюю инфракрасную область. [c.260]

    А. Проводят определение, как описано в разделе Спектрофотометрия в инфракрасной области спектра (т. 1, с. 45). Инфра- [c.50]


Смотреть страницы где упоминается термин Спектрофотометр для инфракрасной области: [c.254]    [c.177]    [c.181]    [c.73]    [c.363]    [c.49]    [c.54]   
Инструментальные методы химического анализа (1960) -- [ c.265 ]

Инструментальные методы химического анализа (1960) -- [ c.265 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометр

Спектрофотометрия



© 2025 chem21.info Реклама на сайте