Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен растворение кристаллов

    Кристаллизующиеся полимеры, включая полиэтилен низкой плотности, при растворении должны нагреваться до температур, превышающих их точку плавления. При снижении температуры может произойти высаждение полимера из раствора в виде кристаллов и уменьшение растворимости. [c.152]

    Некоторые сведения о начальных этапах роста кристаллов на поверхности инородных тел можно получить ири изучении эпитаксии (см. разд. 3.4). Карр и др. [37] показали, что начальный этап роста кристаллов полиэтилена и полиоксиметилена (образование зародышей) происходит на поверхности Na l при температурах, при которых дальнейший рост кристаллов невозможен. Полиэтилен, растворенный в ксилоле, образует большие кристаллы только при температуре ниже 97° С. Эпитаксиальный рост ламелей толщиной несколько сот ангстрем [c.63]


    Расчет гибкости основывается на химическом строении макромолекул. Мы все время говорили о полиэтилене. Однако многие макромолекулы содержат в своих звеньях массивные привески, например, полистирол (— СНа— HR—) , где R есть eHs. Вэтих случаях конформации определяются преимущественно взаимодействиями привесков. Сведения о конформациях цепи можно получить методом рентгеноструктурного анализа — если полимер кристаллизуется. При кристаллизации фиксируются определенные ротамеры для всех звеньев цепи и возникает дальний порядок зная положение атомов в данном мономерном звене, мы знаем их для сколь угодно удаленных звеньев, так как расположение атомов строго периодично. Вместе с тем, в кристалле имеется, конечно, и ближний порядок — определенное расположение соседних звеньев. Кристаллический ближний порядок сохраняется при плавлении и растворении полимера, так как кристаллическая структура полимера отвечает минимуму потенциальной энергии. Можно предположить, что ближний одномерный порядок в свободной макромолекуле, образующей статистический клубок, аналогичен дальнему одномерному порядку в кристалле. Эта идея получила подтверждение в расчетах конформаций и в результатах экспериментальных исследований. [c.71]

    Растворимость химикатов-добавок в неполярных каучуках выше, чем в частично кристаллизующихся полиолефинах (табл. 4.1), потому что кристаллические области полиолефинов недоступны для добавок, и кристаллы снижают пластифицирующее действие растворенных веществ. Между кристалличностью и растворимостью добавки нет прямой корреляции. Растворимость добавок зависит не только от объема аморфной фракции, но также от ее строения. Было установлено [30], что растворимость ДФ и фенил-(3-нафтиламина (ФНА) в твердых полиэтиленах с различной кристалличностью практически одинаковая и лишь слегка падает в полимере с высокой кристалличностью. Авторы относят это к нерегулярности аморфных областей полимера, плотность которых уменьшается с увеличением кристалличности полимера. Мойсен [31] показал, что растворимость Ирганокс 1076 в ПЭ при 60 °С лишь немного изменяется при увеличении кристалличности полимера в диапазоне от 43 до 57% (интервал плотности 0,92-0,94 г/см ), но при повышенных температурах (70 и 80°С) при увеличении кристалличности растворимость падает. Следует заметить, что кристалличность, измеренная при комнатной температуре, может существенно изменяться при изменении температуры, особенно в области вблизи интервала плавления. [c.118]


    Исходя из приведенных выше фактов, можно предположить, что равновесная фазовая диаграмма бинарных полимерных смесей является типичной фазовой диаграммой с эвтектической точкой. На рис. 8.20 приведена такая теоретически построенная диграмма для смесей полиэтилена одного молекулярного веса с полиэтиленами другого, более низкого, молекулярного веса. ЕЬли молекулярный вес первого компонента значительно больше, то эвтектическая точка всегда находится практически при нулевой его концентрации (ср. с рис. 8.18). При таком охлаждении расплава, когда постоянно соблюдаются равновесные условия кристаллизации, сначала должен закристаллизоваться практически полностью высокомолекулярный компонент, прежде чем начнется рост более тонких ламелярных кристаллов из полностью вытянутых цепей низкомолекулярно го компонента. В действительности такой эксперимент не может быть осуществлен вследствие складывания полимерных цепей при кр1 таллизации (разд. 3.2.2.1). Качественная проверка правильности диаг раммы состояния, изображенной на рис. 8.20, была проведена Салли-веном [215], который растворял кристаллы полиэтилена из вытянуть цепей во фракциях этого полимера. Полученные при кристалжзации под давлением кристаллы из вытянутых цепей полиэтилена с широки молекулярновесовым распределением растворяли в десятикратном объеме различных расплавленных фракций полиэтилена. Путем предварительного добавления новых порций кристаллов к расплаву и незначительного изменения при этом его температуры можно определить с помощью светового микроскопа температуру растворения с точностью не менее 0,5°С (ступенчатый нагрев со скоростью [c.124]

    Из факторов, относяш,ихся к самим полимерам, на растрескивание влияют следуюш,ие Наличие полимергомологов, что приводит к разной локальной степени набухания или растворения в полимере, а это, в свою очередь, обусловливает концентрацию напряжений и образование треш ин. В кристаллических полимерах действие растворителя локализуется прежде всего по границам сфероли-тов, а иногда и внутри сферолитов между лучами. Это связано с тем, что при кристаллизации в сферолитах упорядочиваются структурные единицы одинакового строения, например в линейных полимерах — линейные молекулы. В этом случае молекулы, содержаш,ие разветвления и посторонние группы, возникающие в результате окисления и других процессов, автоматически выталкиваются из кристаллов и образуют аморфную или менее упорядоченную фазу между сферолитами. Таким образом происходит концентрирование дефектного материала, по которому начинается процесс разрушения. Неодинаковая скорость воздействия на кристаллические полимеры физически или химически агрессивных сред наглядно проявляется при травлении полимеров аналогично металлам. Опыты по травлению показывают, например, что при действии на полиэтилен концентрированной HNO3 с большей скоростью и в первую очередь растворяется дефектный менее кристалличный материал. В связи с этим сопротивляемость растрескиванию увеличивается при сужении кривой распределения за счет низкомолекулярной части и при увеличении молекулярного веса полимера. Аналогичные данные имеются и для поликарбоната Склонность к растрескиванию уменьшается с уменьшением внешних и внутренних напряжений, а также с увеличением степени кристалличности, т. е. с ростом плотности. Последнее наблюдалось на полиамидах в кислотах а также на полиэтилене в растворе ПАВ Однако одновременное увеличение набухания с ростом степени кристалличности, например в системе фторопласт — керосин приводит к уменьшению долговечности. Сопротивляемость растрескиванию снижается с ростом [c.77]

    Классическое понятие химического соединения сложилось в XIX ст. на основе законов постоянства состава, кратных отношений и атомно-молекулярных представлений о строении вещества. Под химическими соединениями понимались индивидуальные вещества, состоящие из атомов двух или более видов. Качественной и количественной характеристикой индивидуально существующего химического соединения была признана молекула. Однако последующим развитием учения о строении молекул, кристаллических тел и растворов показано, что классическое понятие химического соединения является недостаточным. Так, химическая связь в молекулах тина Nj, состоящих из одноименных атомов, принципиально не отличается от природы химической связи в молекулах из разноименных атомов. Следовательно, химические соединения могут состоять и из одноименных атомов. Исследование строения многих кристаллических веществ, полимеров и растворов сильных электролитов показывает, что в них не обнаруживаются изо.лированные молекулы. Например, все атомы натрия и хлора в кристаллической решетке Na I занимают одинаковые позиции. Кристаллы, подобные Na I, по сути дела являются макромолекулами, величины последних бывают переменными, зависящими от условий кристаллизации, и поэтому не могут рассматриваться в качестве признака химического соединения. Молекулы мономеров в полимерах, например СН2=СН2 в полиэтилене, также не изолированны и не могут служить признаком химического индивида. В растворах сильных электролитов молекулы растворенного вещества могут подвергаться практически 100 %-ной диссоциации. Существует, наконец, большое число твердых фаз, получивших название бертоллидных, которые рассматриваются как соединения перехменного состава, поскольку содержание компонентов в них может изменяться в широких пределах. [c.55]


    Способность какой-либо одной константой или параметром охарактеризовать поведение раствора ограничивается в случае сильных анизометрических дипольных взаимодействий большим несоответствием в размере и форме молекул или резким изменением с концентрацией отношения числа контактов сорбат — сорбат к числу контактов сорбат — полимер. Например, Майкелс и Бикслер [229] нашли, что теплота растворения в линейном полиэтилене линейно связана с параметром г к, а в разветвленном полиэтилене даже при комнатной температуре в присутствии сорбата происходит плавление кристаллов. Вследствие этого найденная теплота растворения порядка 1 ккал/г-моль не согласуется с теоретической зависимостью, рассчитанной по г к. [c.282]


Смотреть страницы где упоминается термин Полиэтилен растворение кристаллов: [c.65]    [c.376]    [c.230]    [c.73]    [c.73]   
Физика макромолекул Том 2 (1979) -- [ c.493 , c.507 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалл растворение



© 2025 chem21.info Реклама на сайте