Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Твердые металлы

Рис. 103. Схема растворения твердого металла в жидком Рис. 103. <a href="/info/219850">Схема растворения</a> <a href="/info/349685">твердого металла</a> в жидком

    Эрозия — это износ и выбивание частиц из поверхности твердого металла под влиянием потока жидкого металла. Кавитацией называют разрушение твердого металла под микроударным воздействием жидкометаллической среды это воздействие проявляется при захлопывании на поверхности твердого металла паровых пузырьков, имеющихся в жидкости. Следовательно, кавитация — это усталостный процесс, протекающий в микрообъемах поверхностного слоя твердого металла. [c.147]

    Растворение твердого металла в жидком состоит из двух последовательных стадий гетерогенной и гомогенной диффузии. Скорость процесса растворения определяется или одной, более заторможенной из этих стадий (первой—при растворении Рев N3, РЬ в сплавах РЬ—8п, рис. 103, а) второй — при растворении Си в РЬ и В1, N1 и РЬ, Ре в Hg рис. 103, б) или обеими (при растворении N1 и Си в РЬ, РЬ в 5п) и в изотермических условиях плавно изменяется от начального максимального значения до нуля при достаточно большой длительности растворения. Повышение температуры и движение жидкого металла увеличивают скорость растворения. Растворение сплавов может быть селективным (избирательным). [c.143]

    Вольфрам является самым тугоплавким из металлов. В ряду Сг—Мо—W наблюдается повышение температуры плавления и теплоты атомизации (возгонки), что объясняют усилением в металлическом кристалле ковалентной связи, возникающей за счет (-электронов. На свойства металлов в большой степени влияют примеси. Так, технический хром—один из самых твердых металлов, в то время как чистый хром пластичен. [c.549]

    И еще раз па человека снизошло озарение. Люди бронзового века узнали о существовании железа — более твердого металла, чем бронза. Вначале железо было очень редким и дорогим металлом, так как это были обломки метеоритов. Получить его из рудного камня, как получали медь, казалось невозможным. Дело в том, чта железо прочнее меди связано с рудой, в состав которой оно входит. Выплавить железо из руды на костре не удается, для этого необходимо более жаркое пламя . [c.12]

    Реальная поверхность твердых металлов обладает резко выраженной неоднородностью как в геометрическом, так и в энергетическом смысле. Вследствие такой неоднородности энергия адсорбции водорода на поверхности электрода будет существенно меняться при переходе от одного адсорбционного центра к другому. Так, на платине различия в энергии адсорбции на различных центрах могут превышать 10 ккал. [c.628]

    Иногда остановки в падении температур[-1 наблюдаю ся и иа кривой охлаждения твердого металла, указывая иа связанные с выделением теплоты процессы, происходящие уже в твердом веществе, например, переход из одиой кристаллической формы В другую. [c.544]


    Образование твердых растворов и соединений между твердым и жидким металлом происходит в результате протекания диффузионных процессов в твердой фазе — атомной и реактивной диффузии — и является весьма нежелательным явлением, так как образующийся слой твердого раствора или интерметаллического соединения обычно бывает хрупким, что снижает пластичность всего изделия. Возможны также частные случаи химического взаимодействия жидкометаллической среды с компонентами твердого металла взаимодействие щелочных металлов с растворенным в твердых металлах кислородом, лития — с углеродом, серой и [c.144]

    Термический перенос массы является наиболее опасным и часто встречающимся на практике процессом в горячей зоне жидкометаллического контура происходит растворение твердого металла в жидком, а в холодной зоне выделение кристаллов из раствора. Незатухающий характер термического переноса массы — главная его опасность. [c.143]

    Изотермический перенос массы наблюдается в том случае, когда вместе с твердым металлом в жидкометаЛлической среде находится другой твердый металл, способный образовывать с первым интер-металлические соединения или твердые растворы (рис. 104). Разно- [c.143]

Рис. 10-2, Окислительные потенциалы мelaJlЛuв чегвертою периода, включая металлы первого переходного ряда. Окислительные потенциалы соответствуют образованию в растворе из твердых металлов их простых катионов, Потенциалы для К, Са и 8с отвечают образованию ионов с заря- Рис. 10-2, Окислительные потенциалы мelaJlЛuв чегвертою периода, включая <a href="/info/1690497">металлы первого переходного</a> ряда. Окислительные потенциалы соответствуют образованию в растворе из <a href="/info/349685">твердых металлов</a> их <a href="/info/132814">простых катионов</a>, Потенциалы для К, Са и 8с отвечают <a href="/info/6059">образованию ионов</a> с заря-
    Причинами межкристаллитного растворения твердых металлов в жидком могут быть 1) более высокий уровень потенциальной энергии атомов,находящихся в межкристаллитных зонах, по [c.144]

    Введение в жидкие висмут, свинец или ртуть небольших (обычно около 0,05% по массе) количеств ингибиторов — циркония или титана — суш,ественно (иногда в сотни раз) снижает скорость растворения в них железа и стали, что обусловлено образованием на поверхности защитных пленок нитридов и карбидов циркония и титана, затрудняющих выход атомов твердого металла в жидко-металлический раствор. Кроме того, присутствие этих ингибиторов замедляет кристаллизацию растворенного металла в условиях термического переноса массы и увеличивает пресыщение раствора в холодной зоне. [c.145]

    ВЗАИМОДЕЙСТВИЕ ТВЕРДЫХ МЕТАЛЛОВ С ПРИМЕСЯМИ В ЖИДКОМ МЕТАЛЛЕ [c.145]

    Разрушение твердых металлов жидкими усиливают и некоторые другие примеси, например азот, водород и хлор. [c.145]

    Первый вид взаимодействия в зависимости от сохранности образующейся окисной пленки на поверхности твердого металла может сопровождаться как увеличением, так и уменьшением массы металла, а иногда иметь межкристаллитный характер (аустенитные хромоникелевые стали при 750° С в жидком натрии с 0,5% кислорода). [c.145]

    В определенных условиях под воздействием потока жидкого металла твердый металл разрушается вследствие протекания процессов эрозии и кавитации. [c.147]

    Коррозионно-эрозионные повреждения твердых металлов повышаются при увеличении потока жидкого металла и его плотности. Они не наблюдаются для сталей в жидком литии даже при высоких скоростях, возникают в жидких натрии и калии при скорости выше 8—10 м/с, а в жидких висмуте, свинце и ртути — при скорости выше 3 м/с. Указанные пределы скоростей превышать не рекомендуется. Более подробно эти вопросы так же, как и эффекты влияния среды на металл, испытывающий действие напряжений, рассматриваются в ч. И применительно к коррозии металлов в жидких электролитах (см. с. 332). [c.147]

    Выражение, стоящее в числителе, представляет собой величину раздачи гнезда двойника в радиальном направлении под влиянием развальцовки. Не всякая степень развальцовки обеспечивает получение прочного и плотного соединения. С увеличением степени развальцовки прочность и плотность вальцованного соединения повышаются до некоторого предела, а затем уменьшаются (явление перевальцовки). Таким образом, имеется оптимальная степень развальцовки, которая для большинства случаев заключена в пределах 0,5—1,2 % Большие величины степени развальцовки соответствуют трубам с большей толщиной стенки, более пластичному металлу труб и более твердому металлу гнезда двойника. [c.260]

    Для ослабления if-излучений чаще всего используют свинец, вольфрам, а также бетон, сталь и другие материалы. При защите от излучений высокой энергии применяют вольфрам и сталь. Из этих твердых металлов изготовляют особо ответственные части защиты. [c.151]


    На границе раздела двух фаз можно выделить пограничный слой, так называемую поверхностную или пограничную фазу. Она обладает избытком свободной энергии по сравнению с каждой из граничащих фаз. Эта избыточная энергия, отнесенная к единице поверхности раздела фаз, т. е. удельная свободная энергия а, имеет размерность джоуль на квадратный метр (Дж-м ) или ньютон на метр (Н-м- ). В случае границы двух жидких фаз, например жидкого металла (ртути, амальгам, галлия) и раствора, удельная свободная энергия а совпадает с поверхностным или пограничным натяжением 7, имеющим ту же размерность, что и а. Если одна из граничаищх фаз представляет собой твердое кристаллическое тело, например твердый металл (серебро, медь, цинк), то удельная сво бодиая энергия уже не равна поверхностному натяжению, а связана с ним соотношением [c.234]

    По кривым дифференциальная емкость — потенциал, которые сравнительно легко получаются экспериментально ие только на ртути, но и иа твердых металлах, можно последовательным инте- рированием определить заряд 5лектрода [c.242]

    Твердые металлы являются кристаллическими телами, т. е, построены на основе одинаковых элементарных ячеек, п узлах которых лежат частично ионизированные атомы. Повторение таких элементарных ячеек в пространстве образует кристал конечных размеров и обус пвливает его однородность и анизотропию в различных направлениях. Большинство металлов кристаллизуется в одной из следующих трех структур кубической объемпоцентрнрованной (например, щелочные металлы, Ва, аРе, Мо, Ш)—стру <тура а-железа, кубической гранецент-рированной (Са, 5г, N1. А1, (ЗТ1, уТ , уСо, Си, Р1)—структура меди и гексагональной (Ве, Мк, аСо, аТ1, Оз) —структура магния. [c.334]

    Если выделение металла совершается на твердом катоде, то в результате разряда нонов образуются первоначально адатомы металла (или его адионы), которые лншь на следующей стадии пере-хо. ят в решетку твердого металла. В этом случае сох= м +  [c.360]

    Сужение области адсорбции на твердых металлах может быть обусловлено и другими причинами — их большей гидрофильиостью, наложением энергетической неоднородности на эффект pa тaлкивa ия и т. д. [c.471]

    Кинетическое истолкование явлений электрохимической коррозии было впервые предложено А. Н. Фрумкиным (1932), который обратил внимание на то, что процесс разложения амальгам щелочных металлов подчиняется законам электрохимической кинетики. Эта идея была развита затем количественно Вагнером и Траудом (1938), которым удалось показать хорошее согласие теории с экс-периментальными данными по скоростям разложения амальгам Цинка. Близкие взгляды были высказаны А. И. Шультиным, Я- В. Дурдиным и рядом других авторов. Плодотворность использования закономерностей электрохимической кинетики для количественного описания коррозии твердых металлов была показана Я. М. Колотыркиным, а также В. В. Скорчеллетти, М. Грином и др. Работы этих ученых оказали значительное влияние на развитие современных взглядов на процессы коррозии и способствовали установлению связи между электрохимической наукой и учением о коррозии металлов. Кинетическую теорию коррозии часто неудачно называют гомогенно-электрохимической теорией или гомогенно-электрохимическим механизмом коррозии. К процессу коррозии, всегда протекающему на границе раздела минимум двух фаз, т. е. по своей природе типично гетерогенному процессу, не следует применять термин гомогенный . Правильнее называть эту теорию коррозии кинетической теорией. [c.493]

    Рассмотренная картина электронного строения твердых металлов показывает, что валентные электроны, осуществляющие химическую связь, принадлежат не двум или нескольким определе1П1ЫМ атомам, а всему кристаллу металла. При этом валентные электроны способны свободно перемещаться в объеме кристалла. Обра- [c.534]

    Элементы Сг, Мо и XV имеют высокие температуры плавления и кипения и являются твердыми металлами. Они относительно инертны к коррозии благодаря покрывающей их поверхность прочной оксидной пленке, которая защищает расположенный под ней металл. Тонкий слой СГ2О3 на поверхности металлического хрома делает хромовые покрытия эффективным средством защиты для менее устойчивых металлов, таких, как железо. Наряду с V эти три металла используются главным образом в качестве легирующих добавок в сталях. Ванадий придает стали ковкость, а также сопротивляемость статическим и ударным нагрузкам. Хром позволяет получать нержавеющие стали, стойкие к коррозии, молибден упрочняет сталь, а вольфрам используется для изготовления инструментальных сталей, сохраняющих твердость даже при нагреве до красного каления. [c.443]

    Синтез углеводородов из смеси СО + Нг (синтез Фишера — Тропша) осущ,ествляют в присутствии микрогетерогенных металлических (N1, Со, Ре, Ки и др.) или твердых (металл на оксиде алюминия) катализаторов при температурах 150— 500 °С и давлениях 0,1 —100 МПа. [c.332]

    Таким образом, гомогенная трактовка протекания электрохимического коррозионного процесса, являющаяся вполне законной для жидкого металла, при переходе к твердому металлу может слуокить только известным приближением являющимся упрощенной картиной при наличии в металле инородных включений и пригодным только для металлов повышенной частоты или для количественной оценки случаев более или менее равномерного характера разрушения поверхности корродирующего металла, т. е. когда общая величина коррозии представляет интерес. [c.186]

    Свойства. Компактные железо, кобальт, никель — твердые металлы, стойкие на воздухе до 400—700°С, благодаря образованию защитной оксидной пленки. Наиболее стоек к действию окисляющих реагентов никель, наимение — железо. В высокодисперсном состоянии данные металлы пирофорны — самовозгораются на воздухе. Ре, Со, N1 — ферромагнетики. Некоторые свойства Ре, Со и N1 указаны в табл. 3.11. [c.557]

    Свойства. Th, U, Ри — серебристо-белые твердые металлы, на воздухе они быстро покрываются темной пленкой из оксидов и нитридов. Некоторые их физические свойства указаны в табл. 3.16. Данные элементы радиоктивны, периоды полураспада для 9oTh, 4l J и мРи составляют соответственно 1,39-10 , 4,5-10 и 24 360 лет. [c.608]

    Наряду с этими мероприятиями возможно использование таких инженерно-технических приемов, которые повышают надежность технологических аппаратов и машин конструкционное демпфирование возможных вибраций переход от статичес-ки-неопределимой к статически-определимой конструкции аппарата защитные покрытия твердыми металлами, полимерами, эмалями и др. изменение кинематической схемы функциониро- [c.99]

    Наличие энергетических флуктуаций атомов на по-иерхнос ги жидкого или твердого металла [c.20]

    Защиту металлов от кавитационной эрозии осуществляют следующими способами изменением формы изделий и чистоты обработки их поверхностей уменьшением вибрации элементов, контактирующих с жидкостью подбором высокотвердого металла или же наплавкой твердого металла на поверхность элемента нанесением на поверхность металла эластичных резиновых или полимерных покрытий, амортизирующих гидравлические удары катодной или протекторной защитой ингибиторной защитой подавлением образования пузырьков путем повышения давления и подбора соответствующей температуры, а также добавления к раствору поверхностно-активных веществ (для понижения поверхностного натяжения жидкости). [c.456]


Смотреть страницы где упоминается термин Твердые металлы: [c.470]    [c.134]    [c.99]    [c.99]    [c.506]    [c.143]    [c.143]    [c.144]    [c.144]    [c.145]    [c.185]    [c.226]    [c.218]    [c.230]    [c.72]   
Окисление металлов и сплавов (1965) -- [ c.364 , c.368 ]




ПОИСК







© 2025 chem21.info Реклама на сайте