Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разряд ионов водорода

    В нейтральных растворах с pH = 7 гальванические элементы, составленные из большинства имеющих техническое значение металлов, работают без выделения газообразного водорода, так как потенциал разряда ионов водорода отрицательнее, чем потенциал анода. Только начиная с определенного значения pH, при котором потенциал анода отрицательнее потенциала разряда водородных ионов, процесс коррозии может сопровождаться выделением водорода. Металлы с очень электроотрицательным по- [c.42]


    ИЛИ (19.4), (19.5), (19.7) ниже, чем при непосредственном разряде ионов водорода по уравнению (19.1). В нейтральных средах, например в растворах солей, водород может выделяться и по схеме (19.1), и по схеме (19.2). Какой механизм будет преобладать, зависит от pH раствора и от природы соли. [c.396]

    Уравнения реакций (19.1), (19.2) и (19.3) представляют собой суммарное выражение процесса катодного выделения водорода при различных условиях электролиза. Этот процесс состоит из ряда последовательных стадий и может протекать по различным путям в зависимости от конкретных условий. Первая стадия — доставка к поверхности электрода частиц, служащих источником получаемого катодного водорода, протекает в данном случае без существенных торможений. Следующая за ней стадия отвечает разряду ионов водорода (или молекул воды) с образованием адсорбированных атомов водорода  [c.403]

    Выделение водорода из недиссоциированных молекул кислоты (так же как и из молекул воды) требует значительной энергии активации и возможно лишь в области весьма отрицательных потенциалов. В то же время непосредственный разряд ионов водорода Н+ совершается со значительно меньшими торможениями. Поэтому акт переноса заряда (15.55 6) предполагает предварительную стадию диссоциации уксусной кислоты, приводящую к образованию ионов водорода. Таким образом, здесь стадии переноса заряда предшествует чисто химическая стадия диссоциации кислоты. Если она замедлена, то вблизи электрода возникает дефицит ионов водорода по сравнению с равновесным и появляется реакционное перенапряжение. Уравнение (15.55 6) в действительности сложнее и само слагается из нескольких стадий, например переноса заряда с образованием атомов водорода, адсорбированных металлом Наде [c.321]

    При разряде ионов водорода первая стадия также заключается в их транспортировке к поверхности раздела электрод — электролит (рис. 14.4, а). После вхождения в двойной электрический слой ион [c.293]

    Оба возможных варианта разряда ионов водорода (либо молекул воды) — на свободной поверхности катода и па адсорбированных атомах водорода — уже рассматривались в предыдущей главе. Здесь следует подчеркнуть, что во втором случае одновременно с актом переноса заряда происходит снятие адсорбированного атома водорода и его удаление в виде молекулы этот процесс называется поэтому электрохимической десорбцией, а вызванное его [c.406]


    Реакция разряда ионов водорода с образованием его атомов, адсорбированных металлом [c.440]

    Электрохимическое выделение водорода из кислых растпор ш происходит вследствие разряда ионов водорода. В случае же нейтральных или щелочных сред оно является результатом электрохимического восстановления воды  [c.295]

    Коренное различие этих двух методов состоит в том, что в случае электролиза с твердым катодом на нем идет процесс разряда иона водорода с образованием щелочи в прикатодном пространстве, а на аноде происходит процесс разряда иона хлора по следующей схеме  [c.259]

    Процесс разряда ионов водорода на катоде в кислых средах сложен и состоит из нескольких последовательных стадий  [c.39]

    Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами. [c.42]

    Последняя стадия как наиболее медленная лимитирует общую скорость катодного процесса. Сероводород непосредственно в катодной реакции не участвует, а является лишь катализатором, ускоряющим разряд ионов водорода. Восстановленные атомы водорода частично рекомбинируют, а частично диффундируют в металл, вызывая водородную хрупкость. [c.18]

    Если контактирующие металлы погружены в неаэрируемые растворы, где коррозия сопровождается выделением водорода, увеличение площади более благородного металла приводит к увеличению коррозии менее благородного. На рис. 6.6 предста ены поляризационные кривые для анода, слабо поляризованного по сравнению с катодом, на котором происходит выделение водорода (катодный контроль). Наклон кривой 1 отвечает поляризации более благородного металла, имеющего высокое водородное перенапряжение. Наклоны кривых 2 и 3 отвечают металлам с низким водородным перенапряжением. Проекции точек пересечения анодных н катодных поляризационных кривых на ось lg I дают соответствующие гальванические токи. Заметим, что любой металл, на котором происходит разряд ионов водорода, является водородным электродом, который при давлении водорода 0,1 МПа имеет равновесный потенциал —0,059 pH вольт. Рис. 6.7 иллюстрирует случай, когда корродирующий металл контактирует с более благородным, имеющим переменную площадь. На оси абсцисс вместо логарифма полного тока нанесен логарифм плотности тока. Если анод площадью Ла контактирует с более благородным металлом площадью Л , то плотность гальванического тока на аноде в результате контакта будет равной [c.114]

    Приведенные реакции разряда ионов водорода происходят вне-сколько стадий. [c.298]

    Растрескивание в политионовых кислотах более всего выражено в области потенциалов 0,04—0,34 В [68]. Эти значения лежат выше потенциалов разряда ионов водорода и, как можно было ожидать, исключают водородное растрескивание. Однако в этом случае интересующие нас потенциалы следовало бы измерять не на поверхности сплава, а в трещинах, где их значения [c.323]

    В H l лимитирующей катодный процесс стадией является замедленная рекомбинация ионов водорода, в то время как при введении ингибитора ИКУ-1 происходит инверсия лимитирующих стадий с преобладанием замедленного разряда ионов водорода. На практике это приводит к снижению окклюзии водорода вглубь металла, а следовательно, к подавлению его охрупчивания. [c.287]

    При расчете защиты изолированных битумным покрытием днищ резервуаров групповыми протекторными установками важно определять расстояние между протекторами и днищем г/г, для того чтобы на участках днища, близко расположенных к протекторам, не возникло высоких отрицательных потенциалов, которые могут вызвать отслаивание изоляции вследствие разряда ионов водорода [c.237]

    При электролизе на катоде выделяется водород, а на аноде — кислород. В зависимости от pH раствора механизм электродных процессов различен. Б сильнокислом растворе на катоде происходит разряд ионов водорода [c.109]

    В современной промышленности электролитическое производство хлора и каустической соды основано на использовании двух различных методов электролиза с твердым катодом (диафраг-менный) и с ртутным катодом. Эти методы различаются по реакциям, протекающим на катодах. На твердом катоде в процессе электролиза происходит разряд ионов водорода, а в электролите образуется щелочь. На ртутном катоде разряжаются ионы натрия, в результате образуется амальгама натрия, которую выводят из электролизера и разлагают водой при этом выделяется водород и образуется щелочь. Освобождающуюся при разложении амальгамы ртуть возвращают в электролизер. [c.131]


    Чтобы исключить подщелачивание раствора вследствие саморазложения амальгамы, и вызываемого им побочного процесса, в электролизер необходимо подавать тщательно очищенный от амальгамных ядов и слегка подкисленный электролит (рН 3). С целью подавления разряда ионов водорода процесс ведут при высоких плотностях тока — 3—8 кА/м . [c.161]

    Во всех случаях на катоде будет происходить разряд ионов водорода (или воды) с образованием щелочи. Суммарный процесс может быть выражен уравнением  [c.192]

    Одновременно с указанными протекает также реакция 2Н+ -Ь + 2е->Н2. Выделение металла с практически приемлемым выходом по току в данном случае возможно при условии, если разряд ионов водорода будет искусственно затруднен, тем более что перенапряжение водорода на хроме мало. Это достигается путем максимального повыщения pH. Однако уже при pH = 3 образуются гидроокись Сг(ОН)з и основные соли, сильно загрязняющие металл. [c.285]

    Разряд ионов водорода происходит в кислых водных растворах по реакциям [c.297]

    II. Разряд ионов водорода (молекул воды или кислоты) с образованием адсорбированных атомов водорода на поверхности катода [c.298]

    Разряд ионов водорода на зеркальной поверхности ртути требует значительно большего напряжения, чем разряд на платине. Так, на платиновых электродах водород выделяется (из раствора кислоты) при напряжении 1,7 в, а на ртутном катоде это напряжение возрастает до 2,5 в и больше. Таким образом, перенапряжение водорода при + выделении его на ртути очень велико. В связи с этим [c.202]

    Реакции разряда ионов водорода и гидроксила и их роль, в процессе осаждения металла [c.33]

    ТАБЛИЦА 14. ВЕЛИЧИНА а и Ь для РЕАКЦИИ РАЗРЯДА ИОНОВ ВОДОРОД НА РАЗЛИЧНЫХ МЕТАЛЛАХ ПРИ ТЕМПЕРАТУРЕ 20  [c.38]

    Скорость разложения амальгам щелочных металлов определяется скоростью разряда ионов водорода. Графически процесс можно иллюстрировать с помощью анодной и катодной поляризационных кривых (рис. 17). Как показали исследования, процесс образования ионов натрия из амальгамы протекает с очень высокой скоростью, разряд ионов водорода чрезвычайно замедлен, поэтому скорость реакции [c.40]

    Для объяснения явления перенапряжения предложен ряд теорий. Так, перенапряжение водорода может быть объяснено запа, дыванием процессов соединения электронейтральных атомов водорода, образующихся при разряде Н+-ионов, в молекулы Нп и последующего отрыва пузырьков газа от поверхности электрода. Согласно более новой теории, разработанной академиком А. Н. Фрумкиным, детально исследовавшим явления перенапряжения, оно объясняется запаздыванием процесса разряда ионов водорода .  [c.431]

    Если разряд ионов водорода совсфшается лишь на доле поверхности (1—0н), свободной от адсорбированных атомов водорода, то скорость его выделения для мягких металлов (0н О) из кислых сред (п= 1, 21 = 1) будет подчиняться уравнению (гх — 1)Яф2 [c.361]

    В области потенциалов, лежащих иа участке 1 вблизи участка 2 при наложении катодного толчка тока, возможен разряд ионов водорода с образованием адсорбированн1з1х атомов водорода. Появление молекулярного водорода и выделение его в газообразной форме исключены, так как потенциалы здесь более положительны, чем равновесный потенциал водородного электрода в данном растворе. [c.415]

    Некоторые исследователи (И. Тафель, Н. И. Кобозев и др.) иридерживаются в вопросе водородного перенапряжения иных взглядоь. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации,т. е. пятая стадия процесса. Эта теория водородного перенапряження, получившая название рекомбинационной, достаточно обоснована для некоторых металлов, в отношении которых наблюдается параллелизм между величиной перенапряжения на них водорода и каталитической их активностью но отношению реакции рекомбинации водородных атомов. [c.41]

    Водородная деполяризация иа различных металлах протекает с разной скоростью. В табл. 6 приведены величины иеренаиря-жения водорода на различных катодах. Наименьшее значение неренапряження водорода наблюдается иа палладии п платине, т. с. на их поверхности легче всего происходит разряд ионов водорода. На поверхности железа разряд ионов водорода затруднен. Еще труднее он происходит на поверхности ртути и свинца. Чем больше перенапряжение водорода иа катоде коррозионного элемента, тем меньше величина э. д. с, этого элемента и тем медленнее протекает коррозионный процесс. [c.44]

    Таким образом, коррозия с кислородной деполяризацией является термодинамически более возможным процессом, так как равновесный потенциал восстановления кислорода более положителен, чем равновесный потенциал выделения водорода. Общая кривая катодной поляризации (рис. 16) имеет сложный вид и является суммарной нз трех кршзых, характеризующих поляризацию ири ионизации кислорода (/), копцептрацноипую поля-рпзаи,пю (//) и поляризацию при разряде ионов водорода (///). Как это видно из рис. 16, общая катодная кривая слагается из тр х участков, характерных для этих трех процессов. [c.45]

    При разряде некоторых веществ лимитирующей стадией электродного процесса может оказаться последующая химическая реакция после разряда вещества на электроде. Так, например, при разряде ионов водорода на многих металлах лимитирующей стадией является ре1 мбинацня адсорбированных атомов водорода в молекулу. При электрохимическом восстановлении некоторых органических молекул на электроде лимитирующей стадией после стадии разряда может быть димеризация продуктов восстановления. [c.401]

    Чем больше ток, тем меньше поверхностная концентрация ионов меди и тем меньше величина (аси +)я> а значит тем больше и соответствующая поляризация. Когда (аси +)я на поверхности электрода приближается к нулю, концентрационная поляризация стремится к бе,сконечности. Плотность тока, при которой значение (аси +)я близко к нулю, называется предельной плотностью тока. Очевидно, на практике поляризация никогда не может достичь бесконечности, так как при потенциале более высоком, чем соответствующий первой реакции, будет протекать другая электродная реакция. В случае осаждения меди, например, смещение потенциала ведет к разряду ионов водорода 2Н Н — 2ё, причем газообразный водород выделяется одновременно с осаждением меди. [c.51]

    Угол наклона dr /d Ig j кривой, описываемой этим уравнением, невелик для небольших значений /. Наклон увеличивается по мере приближения / к / ор + /г и достигает значения р при / > 3> /г + /кор- Перенапряжение выделения водорода для некорродирующего металла также можно выразить с помощью тафелев-ского уравнения, оно имеет вид il = Р Ig (/ + It)/Io и справедливо для всех значений / (см. рис. 4.5). Значения /,, вычисленные с помощью измеренных значений т], также следуют соотношению Тафеля, но с наклоном обратного знака. Наиболее медленной стадией разряда ионов водорода на платине или палладии, видимо, является рекомбинация адсорбированных атомов водорода. Справедливость этого допущения подтверждается тем, что найденное значение а = 2. Для железа а 0,5 и, соответственно, р = = 0,1. Вероятно, медленная стадия реакции выделения водорода на железе протекает по схеме [c.57]

    В случае неингибированной среды NA E величины критериев соответствуют расчетным данным теории замедленной рекомбинации, то есть происходит активный разряд ионов водорода на поверхности металла, приводящий к его наводорожива-нию и последующему водородному охрупчиванию. При введении в коррозионную среду соединений КСФ1-КСФ5 значения критериев приближаются к расчетным данным теории замедленного разряда, что свидетельствует о преобладании молекулярного водорода у поверхности металла и его удалении из среды. [c.273]

    В большинстве же случаев разряд катионов электроотрицательных металлов возможен в интервале pH от О до 5, что соответствует обратимым по- енциалам разряда ионов водорода от О до — 0,25 в. Эти значения положи-тельнее потещиалов металлов электрохимического ряда от никеля до марганца. [c.41]


Смотреть страницы где упоминается термин Разряд ионов водорода: [c.404]    [c.491]    [c.39]    [c.20]    [c.114]    [c.13]    [c.126]    [c.20]    [c.274]    [c.39]    [c.40]   
Смотреть главы в:

Полярография в органической химии -> Разряд ионов водорода


Электрохимия металлов и адсорбция (1966) -- [ c.47 , c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Водорода ионы

Ион водорода, разряд

Ионов разряд



© 2025 chem21.info Реклама на сайте