Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные частицы тепловое движение

    V.9.I. Рассчитать средний сдвиг X сферических частиц песка в воде (т. е. смещение за 1 с за счет теплового движения) и скорость седиментации прн следующих условиях температура 7 = 293 К, вязкость дисперсионной среды -п=1-10 з Па-с плотность песка р = 210 кг/м , плотность дисперсионной среды p = Ы 0 кг/м . Сравнить седиментационную устойчивость дисперсных систем с размерами частиц 10 м (грубодисперсная система) и 10 м (коллоидная система). [c.123]


    Таким образом, значение теории броуновского движения выходит далеко за пределы коллоидной химии, в которой она, кстати говоря, явилась первой количественной теорией. Теория броуновского движения, согласно которой движение коллоидных частиц — прямое следствие теплового движения молекул, приобрела огромное значение в физической химии, физике и философии, явившись убедительным обоснованием правильности материалистического мировоззрения. Исследование броуновского движения привело к созданию теории флуктуаций и способствовало развитию статистической физики. [c.65]

    На процесс геле- или студнеобразования существенное влияние оказывает температура. При повышении температуры интенсивность теплового движения коллоидных частиц и макромолекул высокополимера увеличивается, поэтому связь между ними ослабляется. В результате прочность пространственного сетчатого каркаса, образуемого коллоидными частицами или макромолекулами ВМС, уменьшается и гель переходит в золь. Таким образом, при повышении температуры увеличивается и минимальная концентрация дисперсной фазы или высокомолекулярного соединения [c.392]

    Броуновское движение. Так называют движение взвешенных в жидкости частиц, вызываемое беспорядочными ударами молекул окружающей среды, находящихся в тепловом движении. Если частица велика, то она испытывает много миллионов ударов в секунду со всех сторон, в результате чего эти удары взаимно уравновешиваются. Если же частица мала, то число ударов, получаемых ею, гораздо меньше, и полное взаимное уравновешивание этих ударов становится маловероятным. Поэтому коллоидная частица, как частица очень малая, никогда не испытывает одинаково сильных и одинаково частых ударов со всех сторон, и обычно в каждое данное мгновение преобладают импульсы с одной какой-нибудь стороны, а в следующее мгновение более сильными оказываются удары, направленные с другой стороны. [c.510]

    Диффузией называется самопроизвольно протекающий процесс выравнивания концентраций молекул или коллоидных частиц под влиянием их беспорядочного теплового движения (для коллоидных частиц — броуновского движения). [c.21]

    Диффузия — самопроизвольно протекающий процесс выравнивания концентраций молекул, ионов или коллоидных частиц под влиянием их беспорядочного теплового движения (у коллоидных частиц — броуновского движения). Диффузия — необратимый процесс и сопровождается переносом вещества от мест с большей концентра- [c.339]

    Диффузия — самопроизвольно протекающий процесс выравнивания концентраций молекул, ионов или коллоидных частиц под влиянием их беспорядочного теплового движения (у коллоидных частиц — броуновского движения). Диффузия необратимый процесс и сопровождается переносом вещества от мест с большей концентрацией в места с меньшей концентрацией. Диффузия возможна лишь в системах с невыравненными концентрациями и заканчивается наступлением равновесия, т. е. достижением равномерного распределения частиц по всему объёму. Количественно процесс диффузии в любых системах характеризуется уравнением [c.294]


    Процесс диффузии заключается в самопроизвольном выравнивании концентраций молекул или коллоидных частиц в системе, находящихся в хаотичном тепловом движении. Результатом диффузии является установление одинакового химического потенциала каждого компонента и соответственно равномерного распределения ди )-фундирующих частиц по всему объему системы. [c.19]

    Тиксотропные превращения обязаны тепловым колебаниям молекула изотермических условиях и представляют собой обратимые переходы гель <=> золь или сту-день<=>раствор высокомолекулярного вещества. Степень дисперсности системы при тиксотропных превращениях не изменяется — коллоидные частицы не коагулируют, разрушенные структуры восстанавливаются в результате столкновения и сближения на расстояния действия межмолекулярных сил взаимодействия частиц дисперсной фазы, находящихся в системе в хаотичном движении. Различают прочностную и вязкостную тиксотропию — соответственно обратимое разрушение сплошного простран- [c.30]

    Второй метод определения размеров частиц—по седи-ментационно-диффузионному равновесию—непригоден для грубодисперсных систем (там практически отсутствует поступательное броуновское движение). Для коллоидных систем (размеры частиц 10"- — 10 м) этот метод в гравитационном поле практически не используется, так как здесь существенно преобладает тепловое движение частиц над седиментацией. [c.91]

    Объяснение. Все явления, связанные с тепловым движением частиц (диффузия, осмос и др.), наблюдаются и в золях. Различия в кинетических свойствах золей и молекулярнодисперсных систем являются лишь количественными и связаны с различием в скоростях движения частиц в этих системах. Частицы дисперсной фазы золей в силу того, что они имеют значительно большие размеры, чем обычные ионы и молекулы, движутся значительно медленнее низкомолекулярных соединений. Поэтому скорость диффузии коллоидных частиц всегда намного меньше скорости диффузии в молекулярнодисперсных системах. [c.170]

    Тепловое движение частиц в коллоидных и микрогетерогенных системах получило название броуновского движения в честь английского ботаника Р. Броуна, обнаружившего его в 1827 г. прн [c.56]

    Гуи (1888 г.) и Экснер (1900 г.) предположили, что броуновское движение имеет молекулярно-кинетическую природу, т. е. является следствием теплового движения. Правильность этой точки зрения была подтверждена теоретическими расчетами Эйнштейна и Смолуховского и экспериментальными работами Перрена, Свед-берга и ряда других исследователей. Теперь точно установлено что движение коллоидных частиц является следствием беспорядочных ударов, наносимых им молекулами среды, находящимися в тепловом движении. Если частица достаточно мала, то число ударов на нее приходящихся с разных сторон обычно неодинаково и частица получает периодические импульсы, заставляющие ее двигаться в разных направлениях по очень сложной траектории. С увеличением размера и массы частицы вероятность компенсации ударов возрастает, а инерция частицы становится больше. Это приводит к тому, что большие частицы, порядка 5 мкм, совершают движения, воспринимаемые нами как колебания около некоторого центра. При диаметре частицы больше 5 мкм броуновское движение практически прекращается. [c.58]

    Открытие в 1828 г. броуновского движения и обоснование его тепловой природы явилось первым экспериментальным подтверждением представлений молекулярно-кинетической теории. Изучение движения коллоидных частиц в поле зрения ультрамикроскопа, проведенное Ж- Перре-IIOM, Г. Сведбергом и др., работы А. Эйнштейна и М. Смолуховского позволили создать теории теплового движения частиц, дис к )узии и флуктуации, справедливые и для молекул. На основе этих работ оказалось возможным рассчитать нз экспериментальных данных важнейшую физическую константу—постоянную Авогадро, причем ее расчетное значение достаточно хорошо совпало с теоретическим. [c.88]

    Грубодисперсные системы (например, пыль или суспензия песка в воде) седиментационно неустойчивы и оседают, так как частицы их тяжелы и практически не могут осуществлять теплового (броуновского) движения. Наоборот, высокодисперсные системы (газы, истинные растворы) обладают высокой кинетической устойчивостью, так как им свойственны тепловое движение и способность к диффузии. Коллоидные системы (аэрозоли, лиозоли) по устойчивости занимают промежуточное положение. [c.69]

    Механизм защитного действия сводится, как мы уже указывали, к образованию вокруг коллоидной частицы адсорбционной оболочки из высокомолекулярного вещества. Электронномикроскопические снимки непосредственно доказали наличие таких защитных оболочек. Например, адсорбционные слои из метилцеллюлозы на частицах полистирола имеют толщину 70—100 А. Защитный слой, если он образован из макромолекул, имеющих полярные или ионогенные группы, может обеспечивать индуцированную сольватацию частица и достаточно высокий -потенциал, что обусловливает повышенную устойчивость системы. Кроме того, согласно новейшим представлениям, стабилизация коллоидных частиц может происходить вследствие теплового движения и взаимного отталкивания гибких макромолекул, только частично связанных с частицами золя в результате адсорбции отдельных их участков (энтропийный фактор устойчивости). [c.305]


    Вместе с тем коллоидные растворы, подобно истинным, могут оставаться практически прозрачными при исследовании их под микроскопом в проходящем свете они не обнаруживают неоднородности, оставаясь оптически пустыми . Многим из них, в том числе и коллоидным растворам серы, свойственно явление опалесценции, которое возникает вследствие рассеяния проходящего света частицами коллоида. Броуновское движение как результат теплового движения молекул характерно и для коллоидных растворов, хотя частицы их по величине и массе значительно больше обычных молекул. [c.203]

    Коллоидные системы природных вод состоят из воды, являющейся дисперсной средой, и массы распределекных в ней коллоидных частиц, являющихся дисперсной фазой. Устойчивость коллоидных систем зависит от адсорбционных и электрокииетических свойств коллоидных частиц, обладающих сложной структурой. При погружении в природную воду, т. е. в раствор электролита, твердого тела поверхность его выделяет в раствор или адсорбирует из него ионы. Адсорбируются обычно ионы, входящие в состав этого твердого тела. В результате поглощения ионов или выделения их в раствор поверхность тела приобретает заряд. Противоположно заряженные ионы, находящиеся в растворе, собираются у его поверхности вследствие электростатического притяжения, образуя коллоидную частицу. Тепловое движение ионов в растворе сообщает слою окружающих частичку противоионов диффузный характер. Коллоидная частичка вместе с окружающим диффузным слоем называется мицеллой. Формула мицеллы золя гидроксида железа [c.39]

    Самопроизвольный процесс выравнивания концентраций ионов, молекул или коллоидно-дисперсных частиц за счет их беспорядочного теплового движения (у коллоидных частиц — броуновского движения) получил название диффузии. Диффузия как самопроизвольный процесс для всех дисперсных систем подчиняется одним и тем же закономерностям, установленным Фиком для газов. Согласно первому закону Фика скорость диффузии прямо пропорциональна плошади, через которую происходит диффузия, и градиенту концентрации, Математически этот закон имеет следующее выражение  [c.385]

    Кинетическая устойчивость связана с тем, что в коллоидных системах явлению седиментации противодействует тепловое движение частиц дисперсной фазы (броуновское движение, 213), обусловленное ударами молекул ди С1Герс ионной среды и малым размером самих частиц. Благодаря этому в коллоидных системах частицы сохраняются во взвещенном состоянии даже при значи тельном различии плотностей дисперсионной среды и частиц дис персной фазы. [c.509]

    Частицы коллоида обладают значительно большими размерами и значительно большей массой, чем молекулы растворенного вещества в истинном растворе. Вследствие этого скорости теплового движения частиц коллоида и вызываемого этим движением процесса диффузии соответственно во много раз меньше, чем в истинных растворах. Чем крупнее частицы и чем соответственно меньше скорость их движения, тем меньше и скорость их диффузии. Это относится не только к коллоидным, но и к истинным растворам, н при сопоставлении различных кристаллоидов в истинных растворах также легко установить обрать1ую зависимость между величиной молекулы и скоростью диффузии (табл. 57). [c.512]

    Молекулярно-кинетические свойства. Молекулы дисперсио[1ной среды и взвешенные в ней частицы дисперсной фазы находятся в постоянном беспорядочном тепловом движении, которое для последних называется броуновским (см. гл. XV, 18). Если частица дисперсной фазы достаточно велика, то она испытывает в секунду много миллионов ударов молекул дисперсионной среды со всех сторон, в результате чего эти удары взаимно уравновешиваются. Если же частица дисперсной фазы мала, то чпсло ударов, получаемых ею, гораздо меньше и полное взаимное уравновешивание этих ударов маловероятно. Поэтому коллоидная частица, как частица очень малая, никогда не испытывает одинаково сильных и oдннaк(Jвo частых ударов со всех сторон, и в каждое мгновение обычно преобладают импульсы с одной какой-нибудь стороны, а в следующее мгновение более сильными оказываются удары, направленные с другой стороны. В результате направление движения отдельных частиц дисперсной фазы непрерывно и притом беспорядочно изменяется. [c.196]

    В процессе диспергирования возрастает свободная поверхностная энергия и энтропия, связанная с тепловым движением коллоидных частиц. При диспергировании твердых тел до порошкообразного состояния роль энтропийно -о фактора ничтожна. В случае превышения энтропии над свободной энергией, свя- анной с развитием поверхности, формирование коллоидной системы оказывается термодинамически вы10диым процессом и может протекать самостоятельно, особенно в дисперсных системах с газообразной и жидкой дисперсионной средой. [c.65]

    Теоретические и экспериментальные доказательства тепловой природы броуновского двпжения коллоидных частиц привели к фундаментальному выводу о том, что ультрамикрогетерогенные системы должны подчиняться тем же законам молекулярно-кинетической теории, каким следуют молекулярные системы (газы и растворы). Например, по уравнению (IV.28) можно рассчитать средние скорости движения и энергию коллоидной частицы любого размера, если она принимает участие в тепловом движении. [c.208]

    В растворах полимеров, как и в золях, частицы (макромолекулы) находятся в тепловом движении, н поэтому понятие о гетерогенности пли гомогенности системы не может являться однозначным ирн всех условиях. В хороших растворителях молекула линейного полимера вытянута, в ней отсутствует однородное внут-ренее ядро, характерное для микрофазы. В плохих растворителях макромолекула свернута в компактную глобулу и ее можно рассматривать как частицу отдельной фазы. Такое свертывание макромолекул аналогично возникновению новых фаз. При формировании глобул происходит определенное ориентирование углеводородных цепей и полярных групп, подобное тому, как это наблюдается при образовании мицелл из молекул ПАВ. Максимальное межфазное натяжение на границе макромолекула — среда определяется, как и для всех термодинамически устойчивых коллоидных систем, уравнением Ребиндера и Щукина (VI. 32). [c.311]

    Молекулярная диффузия. Молекулярной диффузией называется перенос распределяемого вещества, обусловленный беспорядочным тепловым движением молекул, атомов, ионов, коллоидных частиц. Молекулярная диффузия описывается первымзаконом Фика, согласно которому масса вещества (1М, продиффундировавшего за время йх через элементарную поверхность йР (нормальную к направлению диффузии), пропорциональна градиенту концентрации этого веи ества  [c.390]

    В дисперсных системах при достаточно малых размерах частиц дисперсной фазы обнаруживается их участие в тепловом движении. Изучение коллоидных частиц, занимающих промежуточное положение между молекулами, находящимися в постоянном движении в истинных растворах, и крупными структурными образованиями в высокоструктурированных объектах, практически неподвижными в отсутствие внешнего воздействия, показало возможность приложения к коллоидным частицам основных закономерностей для молекул, известных из молекулярно-кинетической теории. Принципиальным выводом стало то, что между молекулярно-кинетическими свойствами истинных растворов и коллоидных систем нет качественной разницы, а различия носят только количественный характер. [c.18]

    Таким образом, достаточно мелкие коллоидные частицы (размером менее 1 -Ю м), подобно молекулам, совершают тепловое хаотическое движение и участвуют в процессах ди( )1Ьузии, подчиняясь тем же законам, что и молекулы в молекулярных растворах. [c.88]

    Слабо неньютоновские свойства, обусловленные изменением коэффициента а в формуле Эйнштейна от 4 до 2,5, могут возникнуть в суспензиях слабомагнитных материалов и геомагнитном поле Е 40 А/м), в коллоидных растворах, где основным дезориентирующим фактором становится вращательное тепловое движение частиц. Теория Вращательной вязкости с учетом вращательного теплового движения приводит к выражению, включающему зависимость эффекта от угла 0 между осью вращения частиц и направлением поля и параметра X [1дцЕ/ кТ)  [c.201]

    С развитием теории электролитической диссоциации и введением понятия об ионах появилась теория, развитая в работах Гуи (1910), согласно которой двойной электрический слой имеет диффузное строение. Дело в том, что под воздействием двух взаимно противоположных сил (электростатического притяжения и теплового движения частиц жидкости) противоионы образуют около твердой поверхности адсорбента (коллоидной частицы) диффузную ионную атмосферу (рис. 93, //). Приче.м концентрация противоионов, наибольшая около заряженной поверхности твердой фазы, убывает по мере уВбЛНЧбпия расстояния от границы раздела фаз по направлению внутрь раствора. [c.314]

    Так как коллоидные частицы обладают тепловым движением, то для них характернс явление диффузии. Связь между средним смещением частицы — А за время т и коэффициентом диффузии была установлена теоретически Эйнштейном и выражается следующей формулой ]/2/>о, где О — коэффициент диффузии. Коэффициент диффузии равен количеству вещества, переходящему за 1 с через сечение в 1 см , когда разность концентрации [c.76]

    БРОУНОВСКОЕ ДВИЖЕНИЕ - беспорядочное, непрерывное движение взвешенных в жидкости или газе маленьки.х частиц (до 5 мк), вызываемое тепловым движением молекул окружающей среды. Зпервые описано Р. Броуном в 1827 г. Интенсивность Б. д. зависит от температуры, внутреннего трения (вязкости) среды и размеров частиц движение усиливается при повышении температуры и уменьшении размера частиц и уменьшается при увеличении вязкости. В 1905—1906 гг. А. Эйнштейн и М. Смо-луховский дали полную количественную молекулярно-статистическую теорию Б. д. и вывели уравнение, по которому можно определить среднее значение квадрата смещения частицы в определенном, но произвольном направлении. Экспериментальная проверка этого уравнения, проведенная Ж- Перреном, Т. Сведбер-гом и др., полностью подтвердила его справедливость, утвердив тем самым общность молекулярно-статистических представлений. Измерения броуновских смещений позволяют судить о размерах коллоидных частиц, которые нельзя определить другими методами (напр., при помощи оптических микроскопов). [c.48]

    К коллоидным системам относятся системы, у которых значение а лежит в пределах 1—100 -нм (10 —10- см), а дисперсность— в пределах 1—100 нм (10 —10 см ). Верхний предел дисперсности коллоидных систем обусловлен тем, что при дальнейшем дроблении вещества в растворе уже будут находиться не агрегаты молекул, а отдельные молекулы, имеющие размер порядка 0,1 нм. Нижний предел дисперсности коллоидных систем определяется резким снижением интенсивности теплового движения частиц поперечным размеролГ льше 100 нм. Несмотря"Т а установленный предел в ШО нм в курсе коллоидной химии рассматриваются обычно и более грубодисперсные системы, размер частиц которых может достигать несколько микрометров, а иногда и значительно больше. Это целесообразно потому, что свойства подобных систем, называемых микрогетерогенными. частицы которых хорошо видимы в микроскоп, во многом совпадают со свойствами коллоидных, или, иначе, ультрамикрогетерогенныч [c.15]

    Причина диффузии в истинных растворах, как выше указано, заключается в тепловом движении молекул. Аналогично в коллоидных системах причиной диффузии дисперсной фазы является броуновское движение частиц. Если существует связь между броуновским движением и диффузией, то должна существовать связь между средним квадратичным значением проекции смещения частицы А и коэффициентом диффузии D.  [c.63]

    Примером пептизации с помощью поверхностно-активных веществ может служить пептизация высокодисперсного порошка кровяного, угля пикриновой кислотой и мылами. Окись железа также может быть пептизирована мылами, а окись алюминия — ализарином. Высокодисперсный порошок гидрофильного каолина пептизируется гуминовыми кислотами. Хорошим пептйзирующим действием часто обладают высокомолекулярные вещества, макромолекулы которых способны адсорбироваться на частицах и придавать им заряд или сольватную оболочку. Согласно новым воззрениям пептизация может обусловливаться и взаимным отталкиванием совершающих тепловое движение гибких цепных молекул, только частично адсорбировавшихся на поверхности коллоидной частицы. Более подробно об этих взглядах сказано в гл. IX. [c.255]

    Молекулярно-кинетическими называют те свойства, которые связаны с хаотическим тепловым движением частиц, образующих те или иные системы. Различия в мо-лекз лярно-кинетическом поведении молекулярно-, коллоидно- и мик]эосконически-дисперсных систем зависят от размеров частиц, образующих эти системы, и носят количественный характер. [c.298]

    ДИФФУЗИЯ (лат. с11[ из1о — распространение) — самопроизвольное проникновение одного вещества в другое (газов, жидкостей, твердых тел) в результате беспорядочного теплового движения молекул, атомов, ионов и коллоидных частиц. Процессы Д. имеют огромное значение в самых различных областях науки и техники, живой и неживой природы. Например, в биологии процессы Д. определяют деятельность отдельных частей организма, проницаемость питательных жидкостей и продуктов обмена веществ через клеточные оболочки. Особое значение имеет осмос — диффузия через полупроницаемую перегородку. [c.91]


Смотреть страницы где упоминается термин Коллоидные частицы тепловое движение: [c.194]    [c.377]    [c.13]    [c.17]    [c.207]    [c.22]    [c.17]    [c.86]    [c.234]    [c.407]   
Курс коллоидной химии (1976) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Движение тепловое

Коллоидные частицы



© 2025 chem21.info Реклама на сайте