Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность растворов

    На очищаемые поверхности деталей пасту наносят кистью или шпателем, а при больших размерах поверхностей — растворо-насосом. Толщина слоя пасты 2—5 мм, время выдержки пасты на детали 15—60 мин. В этом случае гарантируется снятие слоя ржавчины толщиной до 1 мм. Если слой ржавчины большей толщины, увеличивают время выдержки пасты на детали или наносят пасту повторно. После удаления пасты поверхность обильно промывают водой или насухо протирают ветошью, а затем — 10%-ным раствором соли Мажеф или 10%-ным раствором ортофосфорной кислоты. На очищенной поверхности металла образуется пленка, защищающая металл от окисления на 1—2 суток. Кроме того, пленка улучшает адгезию лакокрасочных покрытий с поверхностью и удлиняет срок их службы. [c.74]


    Очевидно, что на жидкой поверхности раствора все места равноценны для адсорбции, так что Ns соответствует заполнению всей поверхности адсорбированными молекулами. В случае твердых поверхностей среднее расстояние между молекулами, адсорбированными на активных центрах (особенно если последние малочисленны), велико даже при Ма = Поэтому здесь можно пренебречь взаимодействием между адсорбированными молекулами и принять, как это было сделано выше, что энергия адсорбции не зависит от степени заполнения 0. Однако при адсорбции на жидкой поверхности с повышением поверхностной концентрации среднее расстояние между адсорбированными молекулами беспрепятственно уменьшается до тех пор, пока не будет достигнута плотная упаковка. Отсюда следует, что, применяя изотерму Ленгмюра к этому случаю, мы, с одной стороны, пренебрегаем силами взаимодействия между адсорбированными молекулами и в этом отношении рассматриваем адсорбционный слой как идеальный, а с другой — учитываем собственный объем молекул, так как полагаем, что величина адсорбции Ма = Ms соответствует заполнению всей поверхности. Такое компромиссное решение вопроса может дать правильный результат, если поправка на собственный объем молекул, учитывающая силы отталкивания, значительно превосходит поправку на силы притяжения. Вообще говоря, это маловероятно, поскольку силы отталкивания между молекулами спадают с расстоянием быстрее, чем силы притяжения. Поэтому пока адсорбция мала, приближение, основанное на пренебрежении силами притяжения, допустимо, но с ростом концентрации оно приводит к отклонениям от эксперимента, которые можно устранить, введя соответствующим образом подобранную зависимость ц> от 9, учитывающую силы притяжения. Далее мы увидим, что иногда таким путем можно достигнуть удовлетворительных результатов. Есть и еще одно осложняющее обстоятельство, которое почти никогда не принимается во внимание. Оно заключается в том, что Ms само может зависеть от 9. [c.108]

    В выпарных аппаратах с вынесенной греющей камерой на величину ов влияет место ввода в сепаратор парожидкостной смеси. При вводе парожидкостной смеси над свободной поверхностью раствора в сепараторе ос имеет максимальное значение, которое можно приближенно определить по рис. УП1-8. С увеличением погружения входного щтуцера ниже уровня жидкости об уменьшается [УП1-2]. [c.624]

    Для уменьшения колебаний рабочего давления в, выпарных аппаратах целесообразно в сепараторе и в нагревательной камере иметь минимальные объемы жидкости и вводить парожидкостную смесь в сепаратор над свободной поверхностью раствора. [c.625]


    Мылонафт —мазеобразное вещество от соломенно-желтого до темно-коричневого цвета. Содержит в своем составе натриевые мыла нефтяных кислот, неомыляемые вещества, минеральные соли и примерно 50% и выше воды. Для выделения мылонафта из щелочного раствора применяют высаливание, т. е. вытеснение мыл из раствора поваренной солью. Поваренная соль лучше растворяется в воде, чем натриевые мыла нафтеновых кислот, вследствие чего мылонафт всплывает на поверхность раствора. Кроме высаливания применяют также выпаривание во.аы. [c.389]

    Точка 10 на рис. 8-6 соответствует температуре вторичного пара у поверхности раствора она ниже температуры кипения раствора у поверхности на величину температурной депрессии Ад. [c.190]

    Химический способ. Этот способ очистки представляет собой процесс травления металлической поверхности кислотами, кислыми солями, щелочами или травильными пастами. Травление мелких изделий проводится в ваннах или струйных камерах. Крупногабаритные аппараты очищают от ржавчины путем налива в аппарат травильного раствора или смачивания в три-че-тыре приема (с интервалом 1,5—2 ч) поверхности раствором либо травильной пастой, состоящей из водных растворов кислот и инфузорной земли. [c.466]

    Названные методы позволяют анализировать соединения в растворе. В методе электродинамической ионизации [208] образец растворяется в подходящем растворителе (например, глицерине) с добавлением электролита (солей металлов) и затем к поверхности раствора прикладывается сильное электрическое поле, под действием которого происходит выталкивание в газовую фазу ионов типа [М + металл] + или [М + металл- -глицерин] + и др. В методе бомбардировки быстрыми атомами [209] вещество, ра- [c.136]

    Работу на установке выполняют в следующем порядке. В кювету 5 наливают раствор полимера (уровень раствора должен находиться примерно на середине высоты магнита 6). Кювету устанавливают в держателе на предметном столике микроскопа и с помощью пластмассового пинцета на поверхность раствора аккуратно помещают пластинку. Вращая вспомогательный магнит, устанавливают пластинку таким образом, чтобы она располагалась параллельно боковым стенкам кюветы. Правильность установки пластинки на поверхности раствора контролируют путем наблюдения в окуляре микроскопа. [c.202]

    При деформации поверхности растворов поверхностно-активных веществ происходит перераспределение концентрации в адсорбционном слое, и поверхностное натяжение оказывается уже не одинаковым по всей поверхности. Локальные повышения и уменьшения поверхностной концентрации определяются подвижностью тех же молекул в объеме (диффузия в объеме), скоростью, с которой они переходят из объема на поверхность и обратно, и энергией взаимодействия молекул в адсорбционном слое. Эти эффекты, которые теория Рэлея не принимает в расчет, подробно проанализированы в книге Физико-химическая гидродинамика [7 ]. [c.122]

    Электрохимическое обезжиривание производится на катоде или на аноде в щелочных растворах примерно того же состава, что и при химическом обезжиривании. Эффективность электрохимического способа обезжиривания в некоторых случаях во много раз выше химического. Механизм процесса также сводится к пони жению поверхностного натяжения на границе масло — раствор и увеличению смачиваемости металла раствором, которая при наложении тока значительно возрастает. В данном случае роль эмульгатора вьшолняют пузырьки выделяющегося газа - (водорода или кислорода), которые, адсорбируясь на поверхности капелек масла (на границе масло — раствор), настолько уменьшают краевые углы капелек (рис. ХП-1), что последние отрываются и всплывают на поверхность раствора [7, с. 23]. [c.370]

    Вследствие теплового движения макромолекул в растворе происходит перемещение (диффузия) растворенного вещества в направлении от большей концентрации к меньшей. Если осторожно наслоить на поверхность раствора полимера с концентрацией С[ растворитель (Со), то постепенно граница раздела А-А будет размываться (рис. 1.11). Молекулы растворителя будут диффундировать в направлении х в раствор, а макромолекулы - в противоположном направлении, в слой растворителя. Изменение концентрации на отрезке dx называется градиентом концентрации. Скорость изменения концентрации в результате диффузии (скорость диффузии) описывается соотношением [c.38]

    Допустим, что объем жидкости и двумерный газ на ее поверхности эквивалентны по составу и являются однородными многокомпонентными смесями из N низкомолекулярных компонентов и полимеров. Тогда модель адгезии эквивалентна модели изобары реального двумерного многокомпонентного газа, который существует на поверхности раствора и подчиняется уравнению состояния неидеального газа. [c.11]

    В полиграфии перед гальванопластическим наращиванием меди на медные или омедненные формы (печатные валы или формы глубокой печати) в качестве разделительного слоя наносят тонкую пленку серебра путем смачивания поверхности раствором серноватистого серебра. При этом происходит вытеснение медью серебра, пленка которого не прочно сцепляется с поверхностью меди. [c.443]


    Часто вещества, повышающие поверхностное натяжение растворителя, сами в чистом виде обладают более высоким поверхностным натяжением, а понижающие — более низким по сравнению с растворителем. Большое поверхностное натяжение означает большую энергетическую ненасыщенность молекул на поверхности. Такие молекулы стремятся покинуть поверхность, так как для снижения свободной поверхностной энергии выгоднее иметь молекулы с малой энергетической ненасыщенностью. Естественно, полному разделению молекул препятствует потеря энтропии образования раствора. В результате действия этих двух факторов на поверхности раствора возникает изменение состава по сравнению с объемом, т. е. возникает адсорбция. Различают адсорбцию пол ож ительную, когда концентрация растворенного вещества в поверхностном слое выше, чем в объеме, и о т р и-ц а т е л ь н у ю — в обратных случаях. Вещества, вызывающие положительную адсорбцию, т. е. снижающие поверхностное натяжение растворителя, называются поверхностно-активными веществами (ПАВ). [c.27]

    Ребиндер показал, что поверхностно-активным веществом по отношению к раствору соли является вода. Вследствие этого на поверхности раствора образуется мономолекулярный слой воды. Предполагая, что концентрация электролита постоянна во всем объеме вплоть до границы поверхностного слоя воды, и обозначая через Гг недостаток растворенного вещества в поверхностном слое на 1 см , через 6 — толщину этого слоя и через т — моляр-ность раствора, получим [c.31]

    Наносят на поверхность раствора пипеткой Гаркинса определенный объем раствора ненасыщенной кислоты в бензоле (0,1 г кислоты на 1000 лгл бензола). Растворителю дают испариться. Устанавливают в определенном положении подвижный барьер. Измеряют поверхностное давление и поверхностный потенциал. Передвигают барьер в сторону уменьшения общей площади и производят новые измерения. Измерения продолжают до 5—6 положений подвижного барьера. Все измеренные данные заносят в таблицу. [c.71]

    Условие равновесия компонентов 1 и 2 как в объеме, так и на поверхности раствора — равенство их химических потенциалов  [c.143]

    Выполнение определения. 1. К аликвотной час и испытуемого раствора в стакане вместимостью 250 мл прибавляют 20 мл 2М раствора серной кислоты, 5 мл фосфорной кислоты, 2 мл 1%-ного раствора нитрата серебра и 10 мл 10%-ного раствора персульфата аммония. Стакан накрывают стеклом и смесь нагревают до полного разрушения избытка персульфата аммония (до полного прекращения выделения на поверхности раствора пузырьков газа). Нагревание продолжают еще 5 мин, снимают часовое стекло и осторожно обмывают его дистиллированной водой в стакан. Раствор охлаждают до комнатной температуры (в холодной водяной бане). [c.132]

    В аналитической химии качественно определяют присутствие в растворе иода следующим образом на поверхность раствора наливают тонкий слой бензола и прибавляют хлорную воду. Что наблюдают Какие процессы происходят Как вычислить константу равновесия  [c.153]

    Перенос 1 моля ионов из растш. ра металла в точку вблизи поверхности раствора, где локализуется его внешний потенциал [c.63]

    После подогревателя Т-10 смесь сырья с растворителем охлаждают в водяном холодильнике Т-23 до температуры, не достигающей температуры начала кристаллизации смеси, чтобы предотвратить выделение в холодильнике парафина и отложение его на поверхности охлаждения. Последующее охлаждение ведут в кри-стализаторах, оборудованных скребками, которые непрерывно счищают застывший продукт, откладывающийся на охлаждаемой поверхности. Раствор сырья в первой группе кристаллизаторов Кр-Р (регенеративные кристаллизаторы) охлаждают отходящим фильтратом. Это делают для использования холода фильтрата и для создания более мягких условий охлаждения в начале-кристаллизации парафина, чтобы улучшить кристаллическую структуру охлажденного раствора. Дальнейшее охлаждение осуществляют в кристаллизаторах Кр-А1 и Кр-А2 посредством испарения аммиака в рубашках кристаллизаторов. [c.188]

    Давление пара растворов ниже давления пара чистых растворителей при той же температуре. Понижение давления пара объясняется тем, что поверхность раствора частично занйТа [c.96]

    Для оценок энергетических характеристик зародышеобразования в МИХМе (Кардашев Г. Д., Першина М. А., Салосин А. В., Манукян С. Г.) были поставлены специальные опыты. Раствор аммиачной селитры объемом 4 л переохлаждали на 3°С. В качестве воздействия использовали стальной шарик, ударяющий по наружной стенке сосуда. Энергия удара зависела от высоты подъема шарика. В другой серии опытов над поверхностью раствора резко (за несколько мс) создавали разрежение или сжатие. Совершаемую газом механическую работу измеряли. Возмущения давления, вносимые в раствор, регистрировались гидрофоном. Для наблюдения зародышеобразования был использован известный метод проявления Г. Таммана [1]. Подсчитывали число кристаллов, выпавших на дно сосуда. Экспериментальные точки (рис. 7.1) показывают наличие пороговой энергии и линейной зависимости числа зародышей от полной энергии воздействия. Следует иметь в виду, что лишь какая-то часть полной энергии воздействия идет на инициирование акта зародышеобразования. Поэтому приведенные значения энергии в пересчете на один зародыш на много порядков превьппают известные теоретические. [c.146]

    Механическое возмущение может вызвать в пересыщенном растворе появление пары пузырек- кристалл. Это явление легко наблюдать экспериментально в условиях воздействия мощного ультразвука на раствор в зоне кавитации к поверхности раствора поднимаются пузырьки, а на дно падают кристаллы. При слабых докавитационных полях пузырек не вырастает, вновь растворяясь, а кристаллический зародыщ при наличии пересыщения продолжает расти. [c.148]

    Кусок мрамора с постоянной площадью поверхности растворяется а 1 л 1 н. H l, причем в течение первой минуты скорость растворения равьа 5 г/мин. Раствор перемешивают с постоянной скоростью. Определите объем СОа (измеренный при н. у.), выделяющийся в тече- [c.411]

    Допустимые нгпряжен[1я парового пространства в аппаратах с вынесенной греющей камерой при вводе парожидкостной смеси над поверхностью раствора [c.624]

    Гидролиз и конденсация ведутся в условиях и под действием реагентов, склонных давать линейные полимеры высокого молекулярного веса и не склонных давать перекрестные (кросс) полимеры. Пример гидролиза — выливанием (СНз)23Ю12 на поверхность раствора электролита сообщается в патенте [49]. Приводится описание свойств силиконового каучука [50,51] и указывается, что он сохраняет свойства каучука даже после 4 мес. нагрева до 400° F (204,44° С) и 48 час. нагрева до 575° F (301,66° С). С другой стороны, этот каучук сохраняет свою эластичность при охлаждении до —82° F (—27,78°С). При —90° F (—32,22" С) эластичность снижается, но все же продукт не стано- [c.475]

    Катод и анод закрепляют в электродержателях, присоединяя к источнику тока соответственно полюсам. В электролизер помещают анализируемый раствор, добавляют 1 мл 2 Ai раствора HNO3, погружают в него электроды и разбавляют исследуемый раствор таким количеством дистиллированной воды, чтобы часть катода (5—7 мм) выступала над поверхностью раствора. Это необходимо для проверки в дальнейшем полноты осаждения меди. Электроды не должны касаться друг друга, а также дна и стенок стакана. Включают магнитную мешалку и регулируют перемешивание раствора. Включают ток и проводят электролиз 35—40 мин, контролируя напряжение (2—2,5 В) или ток (1— 0,5 А) по прибору. По мере осаждения меди катод окрашивается в красный цвет, а раствор постепенно обесцвечивается. Затем для проверки полноты осаждения меди приливают в электролизер 10—15 мл дистиллированной воды. Если через 10 мин на вновь погруженной поверхности катода не наблюдается дальнейшего выделения меди, электролиз заканчивают. В противном случае электролиз продолжают еще 10—15 мин. [c.182]

    Неименьшая температура, отмеченная на графике точкой 11, соответствует температуре пара при входе в конденсатор она ниже температуры вторичного пара у поверхности раствора на величину гидравлических потерь в трубопроводе А , которые на практике составляют 1 — 1,5° С. [c.190]

    Пены находят широкое применение, в частности, в процессах флотации руд металлов, твердого топлива и других полезных ископаемых. Пенная флотация частиц минералов происходит вследствие их адгезии к пузырькам воздуха, которые вместе с частицами поднимаются на поверхность раствора. Порода хорошо смачивается водой и оседает во флотомашинах. Флотационные реагенты по характеру действия делят на три класса собиратели,регуляторы и пенообразователи. Собиратели способствуют адгезии частиц к пузырькам газа. Их молекулы имеют полярную часть, обладающую специфическим сродством к данному минералу, и неполярную — углеводородный радикал, который гидрофобизнрует поверхность частицы и обеспечивает ее сродство к пузырьку газа. Регуляторы применяют для увеличения избирательности флотационного процесса они изменяют pH (кислоты, щелочи), подавляют смачиваемость минералов и активизируют их флотацию (соли с флотационно-активными ионами), улучшают смачиваемость породы, уменьшают вредное влияние находящихся в пульпе ионов и т. д. Пенообразователи, или вспениватели, повышают дисперсность пузырьков и устойчивость пены. Обычно это соединения, содержащие в молекуле гидроксильные группы (спирты, фенолы), трехвалентный азот (пиридин, ароматические амины), карбонильную группу (кетоны). [c.351]

    Испытания образцов диаметром 5 мм, вырезанных из тела бурильных замков (сталь 40ХИ), показали, что при полном погружении образцов в буровой раствор и сообщении с атмосферой поверхности раствора в ячей- [c.104]

    В процессе адгезии играют роль поверхностные (двумерные) силы, так как в процессе участвует только тонкий приповерхностный слой жидкости. В предложенной нами модели поверхность адгезива (раствор) рассмотрена как двумерный газ полимерных молекул, а процесс адгезии - как изобарное изотермическое расширение поверхностного слоя адгезива в поле вандервальсовых и химических сил субстрата. Допустим, что объем жидкости и двумерный газ на ее поверхности эквивалентны по составу и являются однородными многокомпонентными смесями из N низкомолекулярных компонентов и полимеров. Тогда модель адгезии эквивалентна модели изобары реального двумерного многокомпонентного газа, который существует на поверхности раствора. [c.111]

    Экспериментальная часть. Для проверки термодинамической модели был проведен эксперимент по измерению адгезии. В качесгве субстрат применялись полиэфирные и стеклянные волокна, а в качестве адгезива - растворы полиэтилена (ПЭ) и полипропилена (ПП) в сильно неидеальных многокомпонентных органических средах. В качестве таких сред были взяты высококипящие фракции смолистых высокосернистых нефтей (с температурой кипения выше 400°С) и остаточные битумы. Эксперимент по определению силы адгезии растворов полимера к волокнистому материалу проводили на лабораторной установке. Адгезия оценивалась усилием отрыва диска, обтянутого волокном, от поверхности раствора ПП или ПЭ. Эксперимент проводился в термостатированной ячейке, заполненной образцом исследуемого материала, в режиме температур от 453К до ЗЗЗК (верхняя граница должна быть выше температуры его размягчения, нижняя соответствовать полному затвердеванию). Зависимости адгезии от температуры и концентрации для системы многокомпонентная фракция - полимер исследованы на воспроизводимость по данным 3 параллельных измерений. Коэффициент вариации равен 2,85, доверительный интервал при надежности 0,95 и числе степеней свободы 20 равен 1,79. [c.112]

    Расчетная потребность воздуха для регенерации сульфида железа составила 0,328 и такое же количество пошло на восстановление карбонатных соединений железа. Общий теоретический расход воздуха аа восстановление раствора гидроокиси железа в количестве 120 л составил 0,656 м . Фактический же расход превысил 21 м .Таким образом, полная регенерация происходила при 32-кратном избытке воздуха с получением гидроокиси железа, готовой к последующшу применению, и элементарной серы, всплывающей на поверхность раствора. Плавающая сера легко удаляется и может использоваться промышленностью в ка естве оцрья. [c.30]

    Первой стадией процесса перюобрааования является образование газовой шуль-сии (эмульсии газ — раствор ПАВ). На межфазной поверхности пузырьков (рис.. 52, а) образуется адсорбционный слой ПАВ При флокуляции пузырьков иа поверхности раствора формируется пленочный каркас пены, характеризующийся тем, что прослойки жидкости между адсорбционными слоями ПЛВ ка пузырьках пены взаимосвязаны, благодаря чему образуется единая структура. [c.174]

    В ряде случаев спектры поглощения и люминесценции одного и того же вещества несколько перекрываются. Вследствие этого излучение на пути от глубоких слоев к поверхности раствора ослабляется в коротковолновой части спектра люминесценции. Это явление называется вторичным поглощением или реабсорбцией света люминесценции. Для уменьшения влияния реабсорбции также необходимо работать с разбавленными растворами или по возможности учитывать ее. Молекулярный кислород тущит флуоресценцию в жидких растворах. Поэтому для уменьшения влияния кислорода из растворов необходимо его удалять или вакуумированием, или продуванием азота через исследуемый раствор. [c.67]

    Однако значител]>ное понижение поверхностного натяжения не я зляется однозначным критерием смачивающих свойств препаратов, так как налицо явное распределение во времени кинетики сма-чдвания гидрофобной поверхности растворами рассматриваемых препаратов. Последнее объясняется неодинаковой активностью препаратов, проявляющейся в различной скорости образования адсорбционного слоя. [c.109]

    В этих целях Платиканов, Недялков и Настева [6] исследовали воздушный пузырек, всплывший на поверхность раствора и образовавший там выпуклую ньютоновскую пленку. Пузырек одновременно наблюдался и фотографировался двумя микроскопами — верхним, сфокусированным на периметр ньютоновской пленки, и нижним, сфокусированным на диаметр погруженной части пузырька. По этим фотографиям определялись соответственно радиус пленки г, радиус пузырька i и по формуле г = R sin 26 угол контакта пленки с объемной жидкостью, который при незначительной (для малых пузырьков) гравитационной деформации поверхности пузырька и поверхности объемной жидкости совпадает с центральным углом пленки. [c.259]

    Выполнение работы. Кювету весов заполняют одномолярной соляной кислотой. После тщательной очистки поверхности раствора на нее наносят каплю раствора октадецилсульфата натрия. Измеряют поверхностное давление, как описано в предыдущей работе. Вычисляют по формуле (26) площадь, приходящуюся на одну молекулу. Строят график в координатах я—5 . Затем солянокислый раствор заменяют пятимолярным раствором хлорида натрия и измеряют поверхностное давление при различном сжатии. По полученным данным на том же графике строят вторую кривую, ход которой сравнивают с первой кривой. [c.68]

    Предположим, кусок твердого тела с поверхностью Зх растворяется в ненасыщенном растворе этого вещества в условиях перемешивания, причем перемешивание не захватывает всего объема жидкости, так что некоторый слой, прилегающий к поверхности твердого тела, остается в относительном покое (рис. 44). В этом слое концентрация растворяемого вещества изменяется, на поверхности раствор остается насыщенным с концентрацией Снас> а на внешней стороне слоя кoнцeнтpaI я зiиз-ка к концентрации в объеме (с). Подобный слой н гвается диффузионным, так как изменение концентрации в нем [c.147]

    В колбу Вюрца вместимостью 50 мл помещают нафталин и ледяную уксусную кислоту. Колбу снабжают капельной ворон1<ой, КОнец которой погружают в жидкость. Отводную трубку колбы соединяют при помощи резиновой трубки с воронкой, опрокинутой над поверхностью раствора щелочи (10—20 %) в стакане. Колбу нагревают на кипящей водяной бане и при помешивании постепенно приливают бром из капельной воронки. Через некоторое время начинается выделение бромистого водорода. Бром добавляют с такой скоростью, чтобы его пары не увлекались бромистым водородом. После добавления всего брома колбу нагревают на кипящей водяной бане еще 3 ч. Затем заменяют капельную воронку на термометр, присоеди- [c.78]


Библиография для Поверхность растворов: [c.141]   
Смотреть страницы где упоминается термин Поверхность растворов: [c.10]    [c.25]    [c.621]    [c.86]    [c.183]    [c.30]    [c.48]   
Введение в количественный ультрамикроанализ (1963) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте