Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия между молекулами

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Когда краевой угол 0 равен О, работа притяжения на поверхности раздела жидкость — твердое тело становится равной 7 , т. е. она представляет величину механического взаимодействия между молекулами жидкости одной и той же природы. Это—предельный случай полного смачивания. [c.331]

    Огромную роль в межмолекулярных взаимодействиях играет водородная связь, поскольку ею в значительной мере определяется возможность образования комплексов, мицелл и ассоциаций молекул в объеме масла и на поверхности металлов. Межмолекулярная водородная связь зависит от электростатических и донорно-акцепторных взаимодействий между молекулами—донором (АН) и акцептором (В) водорода. Энергия водородной связи по величине (8—60 кДж/моль) уступает энергии химических связей, но именно она в межмолекулярных связях во многом определяет ассоциацию молекул воды, спир- [c.203]

    Второй из указанных выше подходов учитывает взаимодействие между молекулами моющих присадок и уже образовавшимися углеродистыми отложениями в масле. В этом случае эффективность моющего действия определяется рядом процессов, протекающих в системе параллельно или последовательно. Одним из них является адсорбция молекул присадок на металлических поверхностях и создание на границе раздела фаз заряженного слоя, препятствующего образованию отложений. Одновременно с этим в объеме масла происходит взаимодействие молекул моюще-диспергирующих присадок с твердыми частицами в виде солюбилизации и диспергирования последних, что в конечном счете приводит к повышению коллоидной стабильности системы. В результате этого снижается интенсивность образования отложений, а следовательно, и загрязненность основных узлов и деталей двигателя 232, 233]. [c.220]

    Как и Б индивидуальных веществах в газовом состоянии, в газовом растворе также имеет место слабое взаимодействие между молекулами смешиваемых веществ. В обоих случаях для систем характерно хаотическое движение молекул и отсутствие определенной структуры. Поэтому газовый раствор при обычных давлениях следует рассматривать как физическую смесь, в которой каждый компонент проявляет присущие е.му индивидуальные физические и химические свойства. [c.126]

    Для снижения склонности масла к образованию отложений необходимо также стремиться к исключению или к снижению до минимума возможности осаждения твердых продуктов углеродистого происхождения на различных узлах и деталях двигателя. Это достигается за счет различного рода взаимодействий между молекулами моюще-диспергирующих присадок и твердыми продуктами. Указанные взаимодействия складываются из процессов солюбилизации и диспергирования, что в конечном итоге приводит к повышению стабильности системы и препятствует седиментации из нее твердой фазы. [c.211]


    Считается, что в подобного рода превращениях основную роль играют взаимодействия между молекулами кислорода и [c.218]

    Простейшее уравнение полимолекулярной адсорбции было выведено исходя из того, что при адсорбции пара молекулы, попадая на уже занятые места, не покидают их немедленно, но образуют кратные адсорбционные комплексы (рис. XVI, 7). По мере приближения значения р к сокращается число свободных мест, растет, а затем сокращается число мест, занятых единичными комплексами, потом двойными комплексами, тройными комплексами и т. д. При выводе уравнения изотермы полимолекулярной адсорбции пара пренебрежем взаимодействиями между молекулами адсорбата в адсорбционном слое [c.450]

    Межмолекулярное взаимодействие. При изучении свойств различных веществ наряду с внутримолекулярными взаимодействиями, обусловленными действием валентных (химических) сил и характеризующимися насыщенностью, большими энергетическими- эффектами и специфичностью, следует учитывать и взаимодействие между молекулами вещества. При расширении газов, конденсации, адсорбции, растворении и во многих других процессах проявляется действие именно этих сил. Межмолекулярные силы часто называют силами Ван-дер-Ваальса (в честь ученого, который предложил уравнение состояния газа, учитывающее межмолекулярное взаимодействие). [c.135]

    Здесь а —постоянная, зависящая от величины сил взаимодействия между молекулами газа Ь — постоянная, приблизительно равная учетверенному объему молекул, содержащихся в 1 моль  [c.132]

    Для понимания сложной суммарной природы раствора, обусловленной совокупностью разнообразных взаимодействий между молекулами, необходимо изучение многих различных свойств раствора, в частности теплот образования растворов и давлений насыщенного пара. [c.168]

    Донорно-акцепторное взаимодействие между молекулами часто обусловливает переход вещества из газового в жидкое и твердое агрегатное состояния. Например, в газовом состоянии дифторид берилл 1Я находится в виде линейных молекул ВеРг. За счет свободных орбиталей атома бериллия и несвязывающих (неподеленных) [c.91]

    При растворении в воде органических веществ, молекулы которых имеют неполярную часть—углеводородный радикал и полярную часть—группу ОН (спирты), СООН (кислоты), NHj (амн-ны) и т. п. (т. е. веществ, дающих водные растворы с положительными отклонениями от закона Рауля), взаимодействие между молекулами воды в объеме раствора больше взаимодействий между молекулами воды и молекулами (в целом) этих веществ, поэтому эти вещества будут преимущественно выталкиваться из объема раствора на поверхность, т. е. их адсорбция Г2>0. Вследствие накопления на поверхности этих веществ, молекулярное взаимодействие в поверхностном слое уменьшается и поверхностное натяжение о с ростом концентрации падает. [c.471]

    Растворы с такими идеальными свойствами получаются при смешении жидкостей с очень близкими свойствами, в которых взаимодействия между молекулами одного сорта и взаимодействия между разносортными молекулами практически одинаковы. В качестве примера можно привести смесь бензола и толуола на рис. 18-8 изображены графики парциальных давлений и суммарного давления растворов этих жидкостей друг в друге. Поведение других растворов может отличаться от описываемого законом Рауля. Если разносортные молекулы взаимодействуют между собой слабее, чем молекулы одного сорта, то вклады в давление пара от каждого компонента будут больше, чем предсказывается законом Рауля. Замена молекул А вокруг молекулы А на молекулы типа В должна повысить шансы молекулы А перейти в паровую фазу. Следовательно, в данном случае вместо закона Рауля должны выполняться соотношения [c.136]

    Положительные отклонения можно объяснить меньшими силами взаимодействия между молекулами разного типа (А — В), чем между молекулами одного и того же веш,ества (А — А и В — В). Положительные отклонения объясняются распадом (диссоциацией) ассоциированных молекул одного или обоих чистых компонентов при их смешении. Это повышает летучесть компонентов. Образование растворов такого типа, как правило, сопровождается увеличением объема и поглощением тепла, т. е. Ду > 0 АЯ > 0 что уменьшает теплоту парообразования, т. е. облегчает испарение. [c.197]

    Здесь будут рассмотрены результаты исследования гидратации биологических молекул в разбавленных водных растворах, т. е. в условиях, в которых отсутствует взаимодействие между молекулами растворенного вещества. Обсуждение экспериментального материала будет сосредоточено на следующих основных вопросах. [c.46]

    На рис. 7.1 для рассмотренных в табл. 7.1 моделей показано распределение вероятности встретить заданное число К ближайших соседей для выделенной молекулы воды. Как видно, эти модели правильно отражают анизотропный характер взаимодействия между молекулами воды максимум распределений находится при 7С=4, в соответствии с числом направлений, по которым может образоваться водородная связь. [c.121]


    Нами было предпринято моделирование кластеров (НгО) (п = 2- 20) с помощью одного из наиболее распространенных методов численного эксперимента — метода Монте-Карло. При этом использовалась стандартная процедура Метрополиса и др. [393]. Конкретный вариант этой процедуры описан в других наших публикациях [386, 394—396]. Расчеты проводили с помощью потенциалов, характеризующих взаимодействие между молекулами воды потенциалов (1), ([394], см. также [386]) и потенциалов (2), описанных в работе [397]. В первом случае молекулы воды представлены системой четырех точечных зарядов 0,195 е (е — заряд электрона), расположенных в верши- [c.137]

    Если взаимодействия между разносортными молекулами в растворе не отличаются от взаимодействий между молекулами каждого из его компонентов, то раствор называется идеальным. Для таких растворов давление пара какого-либо компонента пропорционально его концентрации, выраженной через мольную долю pJ = X p. Это утверждение называется законом Рауля. Если взаимодействия между разносортными молекулами сильнее взаимодействий между одинаковыми молекулами, то давление пара каждого компонента меньше предсказываемого законом Рауля, и в этом случае мы имеем дело с отрицательным отклонением от свойств идеального раствора. Если взаимодействия между разносортными молекулами слабее, чем взаимодействия между одинаковыми молекулами, давление пара оказывается большим, и отклонение от свойств идеального раствора называется положительным. [c.149]

    Здесь J 2 — наблюдаемая молярная доля вещества в газовой фазе — молярная доля, соответствующая нормальному давлению насыщенного пара вещества в отсутствии газа — молярный объем твердого тела V—молярный объем газового раствора Вх2, Сцг, Dxm — вириальные коэффициенты, учитывающие взаимодействие между молекулой растворенного вещества одной—двумя и тремя молекулами газа. [c.11]

    Закон Генри справедлив лишь для сравнительно разбавленных растворов, при невысоких давлениях и отсутствии химического взаимодействия между молекулами растворяемого газа и растворителем. В области низких и умеренных давлений растворимость газов всегда растет с повышением давления (рис. 40). При очень высоких давлениях растворимость может достигнуть максимума (рис. 41). Обусловливается это тем, что при очень высоких давлениях изменение объема жидкости в результате растворения в ней газа становится соизмеримым с объемом растворенного газа. [c.144]

    Для газов при среднем давлении, когда время взаимодействия между молекулами значительно меньше времени изменения функции распределения р (х , х , <), уравнение (1.82) преобразуется в кинетическое уравнение Больцмана [44, 45)  [c.69]

    М злекула N2 слабо поляризуется. Силы взаимодействия между молекулами Nj очень слабые и не могут препятствовать беспорядочному движению молекул (энтальпиршый фактор проявляется значительно слабее, чем энтропийный). Поэтому в обычных условиях молекулярный азот — газ. Температуры плавления азота (—210, 0" С) и кипения (—195,8°С) очень низкие он плохо растворяется в воде и друп х растворителях. [c.345]

    Установлено, что при экстракции неполярными экстрагентами при гемпературах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической про — исхо, ит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате, при определен — 1ГЫХ гемпературах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры — углеводороды с меньптей молекулярной массой. При температурах, превышающих критическую,из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов (рис.6.4). [c.221]

    Тем не менее, теоретически приемлемо считать, что как процесс столкновений молекул (определяемый концентрацией), так и силы взаимодействия между молекулами (частично учитываемые коэффициентами активности) влияют на скорость реакции. Наиболее часто применяемые коэффициенты активности связаны с активностью а и летучестью / следующими соотношениями а=тС, где С—концентрация, выраженная, например, в кмоль1м раствора  [c.22]

    Особенностью адсорбционных взаимодействий, отличающе их от взаимодействия между молекулами в газах, является весьма тесное сближение молекул адсорбата с атомами, ионами или молекулами, образующими поверхность адсорбента. Вследствие этого взаимодействие между частицами адсорбата и адсорбента аналогично взаимодействиям в конденсированных средах, например в растворах, где расстояния между частицами также весьма малы. Поэтому явление адсорбции часто имеет много общего с молекулярной ассоциацией в жидкостях. [c.438]

Рис. 3. Упрощенная модель стол-кновеаия двух молекул (взаимодействия между молекулами нет). Рис. 3. <a href="/info/223112">Упрощенная модель</a> стол-кновеаия <a href="/info/1696521">двух</a> молекул (<a href="/info/295042">взаимодействия между</a> молекулами нет).
    Отклонения от этого простейшего уравнения изотермы адсорбции,означающие, что коэ1 )фициент активности не равен единице, обусловлены в случае однородной поверхности адсорбента (как и соответствующие отклонения от уравнения Генри при распределении вещества между объемными фазами) силами взаимодействия между молекулами адсорбата в адсорбционном слое. Обычно это силы 2,0 притяжения при при-ближени к плотному заполнению поверхности они переходят в силы оттал-кнвания. [c.442]

    Была сделана попытка улучшить результат, получаемый по формуле для числа тройных столкновений, путем учета взаимодействия между молекулами, В данном случае это вопрос существенный, поскольку при наличии притяжения между молекулами может значительно возрасти время жизни сталкивающейся пары, что, естественно, приведет к увеличению числа тройных столкновений. Кроме того, с увеличением температуры роль нзаимодейстаия уменьшается, что не может не отразиться на зависимости скорости от температуры. Если принять модель молекулы шаровой с центральным сферическим силовым полем, то, как уже отмечалось, взаимодействие можно учесть путем умножения соответствующих формул для идеального газа на множитель предложенный Сезерлендом (где фо —некоторая постоянная, связанная с энергией взаимодействия). Тогда число 1ройиых соударений [c.177]

    Растворы, близкие к идеальным, это смеси бензол -- толуол, гексан - пеитап, изотопная смесь Н2О и ОзО и др. Однако большинство реальных растворов более или менее отклоняется от закона Рауля. По отклонению свойств растворов от законов идеальных растворов судят о силе взаимодействия между молекулами его компонентов. Отклонения эти расгут с увеличением концентрации. [c.197]

    В табл. 8.7 суммируются результаты нащих численных экспериментов по моделированию кластеров Na(H20)n и К(Н20) . Энергия выражена в кДж/моль. Для /-структур координационное число равно среднему числу молекул в сфере радиусом 310 пм для Na(H20) и 350 пм для К (НгО),,. Критерий водородных связей геометрический / оо" = 330 пм, / он = 260 пм Еполн, Еъъ, ви — полная потенциальная энергия кластера и вклады в нее взаимодействий между молекулами воды и ионами со всеми молекулами воды. Все /-структуры получены для температуры 300 К. [c.145]

    Если в результате смешивания различных веществ получается новая однородная система — раствор, то его свойства отличаются от свойств каждого из компонентов в отдельности. Это изменение свойств связано, с одной стороны, с характером взаимодействия между молекулами компонентов и вновь образованными продуктами и, с другой стороны, с уменьшением концентрации свободных молекул каждого из веществ при распределении в нем другого вещества. Влияние всех этих факторов усиливается с ростом концентрации, а их количественный учет представляет очень трудную задачу. Поэтому заслуживают внимания крайне разбавленные растворы, для которых АНхО и ЛКлгО. В таком растворе частицы растворенного вещества находятся на большом расстоянии друг от друга и их взаимное влияние можно исключить, а растворитель практически не меняет своих свойств растворы приближаются к идеальным и изучение их упрощается становятся и более простыми уравнения, описывающие свойства таких растворов. [c.150]

    Определение параметров уравнений Вильсона и NRTL. Параметрами уравнений являются константы, характеризующие энергетические эффекты взаимодействия между молекулами в жидкой фазе. Они обычно не поддаются непосредственному измерению или расчету по теоретическим моделям, а определяются по экспериментальным равновесным данным жидкость—пар в бинарных системах, образующих многокомпонентную смесь. Для этого используются уравнения (2-6) и (2-7), записанные для двойных систем. Уравнение Вильсона [c.108]


Библиография для Взаимодействия между молекулами: [c.544]    [c.163]    [c.164]    [c.45]    [c.328]   
Смотреть страницы где упоминается термин Взаимодействия между молекулами: [c.127]    [c.171]    [c.430]    [c.80]    [c.218]    [c.501]    [c.502]    [c.27]    [c.134]    [c.9]    [c.10]    [c.217]   
Смотреть главы в:

Введение в современную теорию растворов -> Взаимодействия между молекулами




ПОИСК





Смотрите так же термины и статьи:

Молекула взаимодействие



© 2025 chem21.info Реклама на сайте