Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный в иодидной среде

    Для разделения цинка и кадмия часто используют образование тройных комплексов, содержащих ионы металла, электроотрицательный лиганд и органическое основание. В основе разделения лежат различная устойчивость галогенидных и роданидных комплексов металлов. В качестве органических оснований используют хлороформные растворы реагентов, указанных в табл. 25. При этом более слабые основания (р С > 9) образуют экстрагируемые соединения с иодидным комплексом Сси " в кислой среде. Цинк в этих условиях не экстрагируется из-за различия в устойчивости этих комплексов. Сильные органические основания (р С 9) взаимодействуют в слабощелочной среде и с кадмием и с цинком (рис. 32, а). [c.151]


    Извлечение и очистка металлов в последнее время все чаще осуществляется с использованием процессов экстракции, достоинствами которых являются высокая избирательность и возможность работы как с макро-, так и микроконцентрациями. Висмут в растворах минеральных кислот (азотной, серной, соляной, бромоводородной, иодоводородной) образует комплексы с анионами кислоты, причем прочность их растет от нитратных к иодидным. Он образует также сравнительно прочные комплексы с роданид-ионами и тиомочевиной. В разбавленных растворах минеральных кислот (pH 0,4—2) висмут легко гидролизуется с образованием основных солей, что препятствует его экстракционному извлечению. Вследствие этого для извлечения висмута интерес представляют экстрагенты, позволяющие количественно его экстрагировать из относительно кислых сред. Гидролиз висмута предотвращают обычно введением в раствор комплексонатов, поэтому перспективны также экстрагенты, способные эффективно извлекать висмут из данных растворов. [c.64]

    Затем можно оттитровать иод (трииодид), образующийся по этой реакции, раствором тиосульфата натрия. Иодат-иодидная система по сравнению с системой бихромат — нодид обладает по крайней мере двумя преимуществами. Во-первых, реакция иодат — иодид протекает почти мгновенно даже в очень разбавленной кислой среде. Во-вторых, при стандартизации тиосульфата бихроматом калия наблюдению за исчезновением синей окраски комплекса иода с крахмалом мешает зеленая окраска иона хрома, а в иодатной методике конечная точка легко обнаруживается по резкому изменению окраски от синей до бесцветной. Единственный недостаток заключается в том, что для стандартизации 0,1 Р раствора тиосульфата натрия требуется только 0,12 г иодата калия, поэтому обычная погрешность взвешивания в 0,1 мг уже превышает предел погрешности, допустимой в методиках стандартизации. [c.337]

    Амперометрическое определение палладия(II) основано главным образом на реакции осаждения. Реагентов для этой цели предложено очень много. Один из самых простых и доступных методов — осаждение палладия(II) иодидом калия [1], с которым палладий (II) так же, как и серебро, дает осадок, практически нерастворимый в воде, но сильно отличающийся по растворимости в аммиаке константы устойчивости аммиачных комплексов палладия (II) и серебра(I) различаются больше чем на 20 порядков. Отсюда следует, что из аммиачной среды в осадок будет выпадать только иодид серебра, а палладий останется в растворе. Золото (III) не может мешать при этом титровании, равно как не мещают ему и ионы цветных металлов, даже в 100—1000-кратном избытке (см. описание иодидного метода определения серебра в разд. Серебро ). [c.228]


    На этой основе были рассчитаны константы устойчивости три-иодидных комплексов, а также многочисленные значения констант устойчивости иода с другими ионами галогенов. Анализ уравнения (1.15) показывает, что зависимость растворимости от концентрации комплексообразующей соли связана с действием двух факторов первый определяется высаливающим действием электролита, а второй -комплексообразованием. Конкуренция этих двух вкладов может привести к тому, что зависимость растворимости от концентрации будет изменяться по кривой с максимумом. Такие зависимости наблюдаются при растворении иода в растворах иодидов, хлоридов, бромидов, тиоцианатов, щелочных и щелочно-земельных металлов [3]. Таким образом, константа устойчивости трииодидных комплексов наряду с параметрами высаливания является характеристикой, позволяющей предсказать зависимость растворимости иода от состава электролитной среды. Необходимо отметить, что константа устойчивости трига-логенидных комплексов очень сильно зависит от природы образующих их ионов и молекул. В работе [42] приводятся сравнительные данные по устойчивости комплексных ионов различного состава при стандартной температуре  [c.28]

    Титрование по току окисления избыточных иодид-ионов на платиновом аноде осуществляется при потенциале +1,0 в по отношению к меркур-иодидному электроду [251, 356]. При pH 2— 2,5 определению не мешают 1000-кратные количества Си, Ге, 2п, РЬ, Мп мешающее влияние ионов палладия устраняется переводом его при pH 4—5 в аммиачный или пиридипатпый комплексы [359, 399]. При pH 1—2 в сернокислой среде определяют сумму палладия и серебра [359], а добавлением аммиака до pH 4—5 титруют серебро, так как палладий при этом не осаждается иодидом. Если присутствует ртуть, то ее оттитровывают комплексоном III с танталовым электродом на фоне 0,1—0,5 N серной или азотной кислот при +1,2 й (нас.к.э.) после этого изменяют потенциал электрода до +0,8 в и титруют серебро иодидом [439]. [c.88]

    Операций по отделению золота и серебра можно избежать, титруя палладий (II) раствором-иодида калия , с которым палладий (II), так же,как и серебро, дает осадки, практически нерастворимые в воде, но сильно отличающиеся по растворимости в аммиаке константы нестойкости аммиачных комплексов палладия и серебра отличаются больше чем на 20 порядков. Отсюда следует, что из аммиачной среды в осадок будет выпадать только иодид серебра (/( ест = 5,89 10 ), а палладий останется в растворе (К нест = 2,5 10 °). Золото (III) не может мешать при этом титровании, равно как не мешают ему и цветные металлы, даже в 100—1000-кратном избытке (см. описание иодидного метода определения серебра в разделе Серебро ) не Ьказывают влияния и ионы платины. [c.279]

    Изучение экстракционного разделения элементов с использованием диантипирилметана проводилось в различных условиях. Была исследована экстракция элементов в кислых средах в присутствии галогепид-ионов, т. е. в условиях возможного образования металлгалогепидпых комплексных анионов. Довольно детально изучались хлоридпые и иодидные системы. Кроме того, были получены экспериментальные данные об экстракции из роданидных и нитратных растворов, а также об извлечении некоторых кислородсодержащих анионов типа хромат-иона. [c.133]

    Впервые константы устойчивости комплексов металлов были опубликованы в начале XX столетия. Большинство работ принадлежало Бодлендеру и его сотрудникам, которые первыми использовали постоянную ионную среду (см. гл. 2, разд. 1), а также и Ойлеру. Например, Бодлендер и Шторбек [18] изучали систему хлорида меди(1), определяя растворимость хлорида меди(1) в водных растворах хлорида калия или измеряя свободную концентрацию иона Си+ с помощью медного электрода. Была рассчитана формула преобладающего комплекса СиС , а также его полная константа устойчивости Рг [18, 19]. Бодлендер и его группа выполнили подобные исследования для ряда неорганических систем, таких, как бромидных и иодидных комплексов меди(1) [19], галогенидов и псевдогалогенидов серебра [16], аммиаката серебра [17] и тиоцианатов ртути(II) [31]. Ойлер использовал потенциометрию и измерения растворимости для определения полных констант устойчивости и изучил комплексы серебра с аммиаком и некоторыми аминами [25, 26], комплексы кадмия, цинка и никеля с аммиаком и пиридином [27, 28] и цианидные комплексы цинка и кадмия [27]. [c.26]

    Титан обладает высокой стойкостью в технологических средах производства брома и иода, содержащих галоген-ионы и свободные галогены, где нестойки все нержавеющие стали, сплавы, большинство полимеров. Титановое оборудование для иодо-бромной промышленности экономически выгодно и перспективно. К этому оборудованию относятся хлораторы, насосы, башни десорбции и абсорбции, вентиляторы, аппараты для вакуум-выпарки растворов бромистого железа, колонны для отгонки брома паром, кристаллизаторы, центрифуги, сушилки иода, выпарные аппараты для упарки растворов хлорного железа, фильтры бромидных и иодидных концентратов. Так, например, использование титановых центрифуг АГ-630Т и сушилок кристаллов иода в кипящем слое позволило не только механизировать процесс и улучшить условия труда, но и получать иод марки 4 без сублимации. Экономический эффект от внедрения этих аппаратов составил более 900 тыс. руб. [385]. [c.122]


    Иодидселективный электрод. Иодидный электрод имеет широкое использование как для прямого определения иодид-ионов в различных жидких средах, так и для их определения в разнообразных твердых веществах. Важной областью применения электрода является, к примеру, определение иодида в молоке 44, 64, 218, 382, 442]. Данный электрод селективен и к ионам g2+ [150, 306, 439] и может применяться также для косвенного определения окислителей, взаимодействующих с I , таких, как Юз [305], Ю4 , 158], Рс1(П) [117, 347, 405], в том числе для определения общего содержания окислителей, например, в воздухе [393]. Иодидный электрод используют для измерения концентрации иодид-иона, участвующего в реакции с пероксидом водорода или перборатом, катализируемой ионами молибдена, вольфрама или ванадия, что позволяет косвенно определять следовые количества этих металлов [12, 192—195]. При помощи иодидного электрода можно измерить проницаемость бислойных липидных мембран к иодид-ионам 348]. Обзор по потенциометрическому определению низких концентраций ио- [c.169]


Смотреть страницы где упоминается термин Ионный в иодидной среде: [c.224]    [c.56]    [c.224]    [c.313]    [c.38]    [c.197]    [c.342]    [c.175]   
Методы аналитической химии Часть 2 (0) -- [ c.155 ]




ПОИСК







© 2024 chem21.info Реклама на сайте