Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий комплексы неорганические

    Известны косвенные титриметрические методы определения, основанные на обменных реакциях ионов серебра с цианидным комплексом никеля, сульфидом меди, на восстановлении ионов серебра металлической медью или амальгамами висмута, цинка, кадмия и последующем комплексонометрическом титровании обменивающихся ионов, выделившихся в количестве, эквивалентном содержанию серебра. К непрямым титриметрическим методам относится также осаждение серебра в виде труднорастворимых соединений с органическими или неорганическими реагентами с последующим титрованием избытка осадителя подходящим реа-1 ентом или растворение соединения серебра в цианиде калия, избыток которого оттитровывают стандартным раствором нитрата серебра в присутствии иодида калия. [c.77]


    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]

    Основные свойства некоторых неорганических соединений кадмия сведены в Приложении 1 константы нестойкости его не-рганических комплексов представлены в Приложении 2. [c.29]

    В первые годы исследований в области разработки методов получения особо чистых неорганических веществ создано большое число лабораторных методик получения целого ряда особо чистых веществ, необходимых для производства люминофоров, для оптической техники и радиоэлектроники. Среди них — неорганические кислоты, значительный ассортимент хлористых, фтористых и углекислых солей щелочных и щелочноземельных металлов, сульфиды и сульфаты цинка и кадмия. При получении этих веществ был теоретически обоснован и впервые в отечественной практике применен метод выведения примесей осаждением их в виде комплексов с аналитическими реактивами (например, с М,М-диэтилдитио кар-баматом натрия), комплексонами и другими комплексообразующими веществами. Автором этого метода является И. И. Ангелов. [c.13]

    По реакции с люминолом определяют неметаллы и органические вещества с пределом обнаружения 10 —10 г/л неорганические и органические сульфиды, 8-гидроксихинолин, аминокислоты, аминофе-нолы и др. Люминол применяют как индикатор в ти-триметрии, например в комплексонометрии к раствору соли цинка или кадмия добавляют избыток титрованного раствора динатриевой соли этилендиаминтетрауксусной кислоты, который затем оттитро-вывается раствором соли меди известной концентрации в присутствии люминола и Н2О2 сначала медь связывается в прочный комплекс, а в точке эквивалентности свободные ионы меди катализируют хеми- [c.366]


    Кроме очень немногих неорганических соединений для фотометрического определения кадмия используют главным образом его органические комплексы, принадлежащие к указанным в гл. II основным группам. Методы, основанные на светопоглощении растворов этих соединений, позволяют определять — и-10  [c.82]

    Этим способом получается функция ао( ) для разнообразных систем последовательных комплексов меди(П) [13, 16], цинка [11, 16, 48—50, 58, 71], кадмия [10, 16, 22, 29, 37, 71], свин-ца(П) [4, 16, 17, 25, 26, 28, 37, 38, 53], олова[П] [59] и таллия(1) [16, 38, 53] с неорганическими и органическими лигандами. Однако нельзя предполагать, что эти катионы обратимо восста-навливаются в присутствии всех лигандов. Так, свинец(П) восстанавливается необратимо в иодидных растворах [30], хотя его восстановление обратимо в хлоридных 25] и бромидных [26] растворах. Данные для систем никеля(II) с пиридином [72] и [c.222]

    Наиболее удобными реагентами для выделения сернистых соединений из нефтепродуктов являются некоторые неорганические соли, образующие с органическими сернистыми соединениями комплексы, нередко хорошо кристаллизующиеся и обладающие резкой температурой плавления. Комплексы эти весьма разнообразны. Они образуются с различными солями меди, серебра, цинка, кадмия, ртути, платины, палладия, [c.243]

    Бериллий, бор, галлий, фосфор, мышьяк, сурьма, селен, теллур, ванадий, молибден, уран, марганец, железо, медь и кадмий превращаются при нагревании в комплексы фтористого нитрозила. Получение таких комплексов уже обсуждалось выше. Так, многие неорганические хлориды превращаются во фториды, которые затем образуют комплексы с фтористым нитрозилом, например  [c.423]

    На рис. 1 приведена зависимость степени образования цианидных комплексов кадмия С(1СЫ+, Сс1(СЫ)2, Сс1(СМ)Г, Сб (СЫ)4 от концентрации свободных СЫ -иоиов. Этот график построен [7] на основании значений констант устойчивости, определенных И. Леденом [11] при 25°С в ЗМ перхлоратном электролите ( 1 = 3,0-10 8 = 4-101 Рз = 1,6-10 р4 = 6-10 ). Из рис. 1 видно, что при [СЫ ] < 10 Ж в растворе преимущественно присутствуют простые гидратированные ионы С(1 +, а при [СЫ"] 10" высшие комплексы Сс1(СМ)4 . С увеличением концентрации цианид-ионов от 10 до 10 Ж концентрация комплексов СбСЫ" , С(1(СЫ)2 и Сс1(СЫ)з возрастает, достигает максимума, а затем уменьшается. При этом нельзя выделить область концентрации СЫ -ионов, в которой кадмий преимущественно присутствовал бы в форме одного из комплексов Сс1 (СЫ) (/=1,2,3). Сходная ситуация имеет место для многих неорганических комплексов. [c.13]

    Весовыми формами для определения кадмия служат его неорганические соединения (окись, соли), внутрикомплексные соединения с органическими реагентами, тройные комплексы с неорганическими и органическими соединениями и выделенный электролитически металл. Распространенный ранее электрогравиметри-ческий метод, позволяющий определять до 500 мг С(1, для получения точных результатов требует длительного электролиза. Обычно электролитом служит раствор цианида. Ускоренные варианты этого метода менее надежны. Для массовой работы наиболее пригодны методы, основанные на выделении соединений кадмия различными неорганическими и, особенно, органическими осадителями. Обычно их используют для определения и-10 — и-10 мг С(1, реже [c.50]

    К настоящему времени методами ФЭС исследовано небольшое число комплексов метил- и диметилпроизводные ртути, кадмия, цинка, ферроцен, карбонилы и нитрозилкарбонилы никеля, марганца, ианадия, (РРз) , Р1(РРз)4, летучие хлориды титана и ванадия и др., а также многочисленные органические и неорганические соединения, которые могут фигурировать в роли лигандов. [c.265]

    Комплексы с другими неорганическими лигандами. Устойчивые цианидные комплексы образуются с ионами меди, кадмия, цинка, железа(П1) и железа (II), кобальта, никеля и др. Однако в связи с большой ядовитостью цианид мало применяют в анализе. Его использование в анализе ограничивается маскированием посторонних ионов при определени некоторых ионов другими методами, хотя в принципе возможно использование цианида в качестве титранта. [c.268]

    Двухвалентные металлы (ртуть, кадмий, цинк, медь, кобальт, никель и марганец) экстрагируются в виде M lj, HM I3 или H2M I4 с постоянным сольватным числом, равным двум [382, 386—393]. Как п в случае трехвалентных металлов, комплексообразование иона металла в водном растворе хлорида определяет состав неорганической части аддукта, где литий может замещать в комплексе ион водорода. [c.50]

    Впервые константы устойчивости комплексов металлов были опубликованы в начале XX столетия. Большинство работ принадлежало Бодлендеру и его сотрудникам, которые первыми использовали постоянную ионную среду (см. гл. 2, разд. 1), а также и Ойлеру. Например, Бодлендер и Шторбек [18] изучали систему хлорида меди(1), определяя растворимость хлорида меди(1) в водных растворах хлорида калия или измеряя свободную концентрацию иона Си+ с помощью медного электрода. Была рассчитана формула преобладающего комплекса СиС , а также его полная константа устойчивости Рг [18, 19]. Бодлендер и его группа выполнили подобные исследования для ряда неорганических систем, таких, как бромидных и иодидных комплексов меди(1) [19], галогенидов и псевдогалогенидов серебра [16], аммиаката серебра [17] и тиоцианатов ртути(II) [31]. Ойлер использовал потенциометрию и измерения растворимости для определения полных констант устойчивости и изучил комплексы серебра с аммиаком и некоторыми аминами [25, 26], комплексы кадмия, цинка и никеля с аммиаком и пиридином [27, 28] и цианидные комплексы цинка и кадмия [27]. [c.26]


    Метод движущейся границы использовался для изучения лабильных комплексов самых различных типов от простых неорганических ионов до форм, образованных взаимодействием биологических макромолекул. Например, были получены константы устойчивости иодида кадмия [1], кональбумина — лизо-зима [23] и систем овальбумин — нуклеиновая кислота [49]. Метод движущейся границы также применялся для определения констант ионизации аминокислот [75]. Электрохроматографиче-ские данные можно обрабатывать аналогичным образом 63а]. Значения р для ряда неорганических кислот были рассчитаны по известным значениям электропроводности и чисел переноса [42, 63]. [c.379]

    В последние годы возрос интерес к развитию газохроматографических методов анализа металлов в виде летучих комплексов [18, 19]. В качестве примера приведем разделение смеси неорганических катионов цинка, кадмия, кобальта, никеля и свинца в форме их комплексов с бис-диэтилдит офосфинатом [20]. Комплексы [c.18]

    Авторы заметили, что растворимость С5 льфата кадмия в этил-ацетате, даже в присутствии воды, незначительна присутствие ионов С(1 + не обнаруживается цолярографически, однако, прибавление в систему роданида аммония згвеличивает растворимость в среднем в 10 раз. Объяснение этому явлению можно найти в лиотропном влиянии роданида на растворяющую способность этилацетата по отношению к неорганическим ионам гидратированные ионы кадмия образуют лиофильный комплекс с роданидом, который внедряется в межмолекулярные полости растворителя с образованием соединений включения. Интересно, что число ионов кадмия, переходящих в этилацетат при постоянной концентрации воды и роданида аммония, зависит от общего количества, взятого сульфата кадмия, причем отношение растворенной массы к общей массе навески — коэффициент распределения — постоянен в широком интервале изменения навесок (от 10 до 1000 мг в 10 см раствора) и составляет приблизительно 0,095. [c.126]

    Из водной в органическую фазу могут переходить различные формы экстрагируемых элементов. Соединения неорганических ионов в подавляющем большинстпе плохо растворимы в органических растворителях и поэтому не извлекаются ими. Исключение составляют некоторые галиды, цианиды и роданиды. Например, хлорид железа (И1) можно извлечь эфиром в виде анионного комплекса метилизобутилкетоном можно экстрагировать роданид цинка, отделяя его от роданидов кобальта, кадмия, меди и др. В подавляющем большинстве экстрагируются различного типа комплексные соединения, особенно с органическими лигандами, например дитизонаты, купферонаты и др. В некоторых случаях экстрагируются сложные многоядерные комплексные соединения, гетерополикислоты и др. [c.259]


Смотреть страницы где упоминается термин Кадмий комплексы неорганические: [c.41]    [c.63]    [c.76]    [c.236]    [c.326]    [c.204]    [c.63]   
Аналитическая химия кадмия (1973) -- [ c.26 , c.28 , c.35 , c.200 , c.210 , c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Кадмий комплексы

Комплексы неорганические



© 2025 chem21.info Реклама на сайте