Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факторы, определяющие растворимость в воде

    Растворы ВМС, образующиеся с понижением свободной энергии и находящиеся в равновесном состоянии, агрегативно устойчивы, как и истинные растворы. Их устойчивость главным образом определяется растворимостью данного ВМС в растворителе, а другие факторы, которые играют основную роль в устойчивости лиофобных коллоидов, например заряд частицы и сольватирующая способность, практически не влияют на устойчивость. Так, известно, что белки устойчивы в изоэлектрической точке, где дзета-потенциал равен нулю. Поэтому теории, которые объясняют агрегативную устойчивость растворов ВМС действием электрического заряда либо сольватацией, в настоящее время надо признать устаревшими. Заряд и сольватация, конечно, играют роль, но только в той степени, в которой они влияют на растворимость ВМС. Так, растворимость белков зависит от pH она минимальна в изоэлектрической точке. При смещении от изоэлектрической точки увеличение заряда и гидратация молекул белка повышают растворимость его в воде, и поэтому увеличивается устойчивость раствора ВМС. [c.368]


    Вскоре после появления теории междуионного притяжения Дебая и Гюккеля данные о растворимости стали широко использовать для проверки справедливости этой теории. Бренстед и Ла-Мер [10] определили растворимость комплексных кобальтамминов 1,1-, 2,1- и 3,1-валентных типов. Значительно позже была измерена растворимость аналогичных соединений типа 2,2 и 3,3 [И]. Эти данные подтвердили, что фактор валентности в теоретическом уравнении имеет правильное значение, и показали, что пропорциональность значения lgy квадратному корню из ионной силы соблюдается весьма точно. В некоторых случаях [12] вычисленные на основании этих опытов данные согласуются с численными значениями теоретического коэффициента наклона. Позднее Ла-Мер и другие исследователи наблюдали резкое изменение величины наклона при достижении концентрации растворенного вещества, соответствующей насыщенному раствору в воде. Бакстер [13] подтвердил справедливость теоретических данных при 75° путем измерения растворимости иодата серебра в растворах солей. Измерения растворимости в органических растворителях с низкой диэлектрической постоянной, как правило, дают результаты, которые согласуются с теоретическими данными лишь качественно. [c.419]

    Опыт последних лет показал, что при растворении полимеров энтропийный фактор благодаря аномально большой энтропии смешения в некоторых случаях играет основную роль. Например, он почти целиком определяет растворимость неполярных полимеров в углеводородах. Поэтому-то оказались неправы те исследователи (Кац, Бренстед), которые пытались объяснить растворимость полимеров только влиянием энергетического фактора. Однако, когда имеют дело с полярными полимерами, например, когда растворяют желатин в воде или нитрат целлюлозы в ацетоне, энергетический фактор может играть существенную роль и его влиянием нельзя пренебрегать. [c.441]

    В случае геля кремниевой кислоты физическое старение сопровождается химическим, что обусловлено наличием на поверхности частиц геля реакционноспособных гидроксильных групп. На скорость синерезиса и дальнейшего старения геля влияют те же факторы и в том же направлении, что и на скорость застудневания золя, а именно pH среды, температура, присутствие в интермицеллярной воде растворимых в ней органических веществ и др. они определяют изменения в пористой структуре силикагелей как на стадии застудневания золя, так и на стадии старения гидрогеля. [c.45]


    С увеличением температуры растворимость воды во всех топливах и маслах увеличивается. Поэтому при одновременном повышении температуры нефтепродуктов и воздуха содержание воды в них возрастает, причем тем больше, чем больше градиент перепада температур между нефтепродуктами и внешней средой. Таким образом, благоприятные условия обводнения создаются при быстром потеплении, когда температура нефтепродукта и воздуха быстро повышается, при этом скорость нагрева воздуха значительно превышает скорость нагрева нефтепродукта. Для практического использования установить прямую связь между температурой нефтепродуктов и содержанием в них воды затруднительно. Это объясняется тем, что фактическое содержание воды в топливах и маслах определяется не только температурой, но и другими факторами, которые следует рассматривать комплексно. [c.137]

    Температура сырой (обводненной и обезвоженной) нефти — многообразный по проявлению фактор коррозии внутри резервуаров. Она определяет растворимость в этих средах основных коррозионных агентов (воды, кислорода, сероводорода и СО , а также, согласно химической кинетике, скорость коррозионного процесса. На развитие коррозии металлов в емкостях оказывает влияние не столько температура углеводородных жидкостей, сколько разность температур между нефтью и окружающей резервуар атмосферой. Значительная разность температур между стенками резервуара и контактирующей с ними газовой средой (при полной насыщенности ее влагой и парами углеводородов) является движущей силой процесса непрерывной конденсации жидкости на кровле и внутренних стенках резервуара и, следовательно, причиной не только дополнительного обводнения хранящейся в резервуаре нефти и нефтепродуктов, но и насыщения конденсирующихся капель воды и нефтепродуктов компонентами газовой атмосферы (кислородом и сероводородом). [c.16]

    Биохимическая очистка [5.21, 5.24, 5.33, 5.55, 5.64, 5.72]. Метод основан на способности микробов использовать в процессе своей жизнедеятельности различные растворимые органические и неокис-ленные неорганические соединения (например, Сг +, аммиак, нитриты, сероводород). Поэтому применение биохимического метода дает возможность удалять из сточных вод разнообразные токсичные органические и неорганические соединения. Если скорость биохимического процесса определяется условиями подвода кислорода и поверхностью микробных тел (диффузионные факторы), те применяют аэротенки — смесители с пневматической или механической аэрацией. При пневматической аэрации часть органических соединений может десорбироваться в атмосферу. Если скорость биохимического процесса зависит только от кинетических факторов и практически не зависит от наличия кислорода и числа микробных тел, то применяют биофильтры, окислительные пруды и водоемы. [c.496]

    Поскольку сточные воды могут иметь различный pH среды, то необходимо учитывать влияние этого фактора на растворимость БА. Ив рис. 3 следует, что при низких и высоких значениях уН воды растворимость БА определяется в основном его гидролизом, при этом разложение БА в щелочной среде, как и [c.120]

    Физико-химические факторы определяются специфическими свойствами загрязняющих веществ (миграционная способность, сорби-руемость, растворимость, химическая стойкость — время распада загрязняющего вещества) и взаимодействием загрязняющих веществ с породами и подземными водами. [c.60]

    Представляется несколько сомнительным, что разнообразные формы кремнезема, включая окаменелое дерево и кремнистые г ещества, произведенные жизнью животных и растений, могут быть следствием малой растворимости кремнезема в воде. Механизм растворения и переосаждения его является предметом широкого обсуждения. До сих пор отчетливо не определена молекулярная форма, в которой кремнезем существует в растворе, и еше не выяснены факторы, определяющие растворимость различных его форм. [c.6]

    Влияние минеральных солей и температуры на растворимость органических веществ в воде и на их адсорбцию. Величина растворимости определяет конечный итог взаимодействия молекул вещества с водой. Чем больше это взаимодействие, тем больше растворимость и, соответственно, тем меньшей величины адсорбции можно ожидать. В то же время в работах, посвященных влиянию растворимости иа адсорбцию, обычно рассматриваются результаты совместного влияния нескольких факторов (увеличение размеров молекулы в гомологическом ряду и из.менение растворимости или введение различных функциональных групп с разной адсорбируемостью и изменение растворимости). При выяснении количественного влияния собственно растворимости на адсорбцию необходимо проследить влияние изменения растворимости одного и того же вещества на величину его адсорбции. [c.85]

    До сих пор еще нет уверенности в вопросе о том, какие факторы определяют характер образующегося отложения (образуется ли накипь или шлам). Одно время было принято считать, что любое соединение, растворимость которого с повышением температуры понижается, осаждается на горячих стенках, образуя накипь, тогда как соединение, растворимость которого с температурой повышается, оседает в виде шлама. Однако известны исключения из этого правила и в вопросе о том, что образуется — накипь или шлам, большую роль, вероятно, играет относительная способность к зарождению центров кристаллизации на различных участках. Некоторые соединения, если вода ими пересыщена, очень легко образуют центры кристаллизации на стенках сосуда и поэтому получается хорошо пристающая накипь возможно, что это обусловлено какой-то простой связью между межатомными расстояниями в окисле, покрывающем металлическую поверхность и в оседающем соединении. В других случаях центры кристаллизации сначала появляются в жидкости, в участках, расположенных на заметном расстоянии от металла в результате образуется шлам. В случае бикарбоната кальция распад его, по-видимому, иногда происходит на поверхностях пузырьков-пара, в которые может проникнуть углекислый газ поэтому карбонат кальция образует микроскопические частички, прилипающие к пузырькам, и поднимается с ним на поверхность, создавая пену. [c.396]


    Антиокислительная стабильность индустриальных масел в процессе эксплуатации и хранения — одна из важных характеристик их эксплуатационных свойств. По антиокислительной или химической стабильности определяют стойкость масла к окислению кислородом воздуха. Все нефтяные масла, соприкасаясь с воздухом при высокой температуре, взаимодействуют с кислородом и окисляются. Недостаточная антиокислительная стабильность масел приводит к быстрому их окислению, сопровождающемуся образованием растворимых и нерастворимых продуктов окисления (органических кислот, смол, асфальтенов и др.). При этом в масле появляются осадки в виде шлама, нарушающие циркуляцию масла в системе и образующие агрессивные продукты, которые вызывают коррозию деталей машин. Срок службы масла при окислении значительно сокращается, повышается его коррозионность, ухудшается способность отделять воду и растворенный воздух. На окисление масла влияют многие факторы температура, пенообразование, содержание воды, органических кислот, металлических продуктов изнашивания и других загрязнений. [c.266]

    Растворимость биополимеров в воде в значительной мере определяется их способностью к гидратации. У глобулярных водорастворимых белков высокий уровень гидратации обеспечивается предпочтительным расположением на их поверхности гидрофильных групп. У нуклеиновых кислот важным фактором, способствующим гидратации, является наличие в нейтральной и щелочной среде отрицательно заряженных остатков фосфорной кислоты. Добавление органических растворителей понижает степень гидратации и приводит к осаждению гидрофильных биополимеров. Так, для осаждения белков используется добавление к их водным растворам ацетона. Нуклеиновые кислоты осаждаются добавлением этанола. [c.233]

    Токсичность осадков сточных вод гальванических производств определяется присутствием соединений РЬ, Сг, Си, N1,2п, Сс1 и других металлов и анионов, а также их растворимостью. Токсичность является определяющим фактором при выборе направлений утилизации осадков. Согласно классификатору токсичности [54], гальваношламы могут быть отнесены к П-ГУ классам токсичности. Токсичность шламов, определяемая по этому классификатору, в основном зависит от наличия растворимых тяжелых металлов. [c.22]

    Выбор органического экстрагента определяется не только коэффициентами распределения и разделения, но и рядом других факторов. К последним относится химическая и радиационная устойчивость реагента, легкость и быстрота реэкстракции продуктов извлечения, удельный вес органической фазы по сравнению с водной, величина взаимной растворимости экстрагента и воды, величина поверхностного натяжения, вязкость, воспламеняемость, токсичность и стоимость. [c.305]

    Подробно описывая систему —Н2О, автор подчеркивает, что растворение кремнезема в воде — процесс химический, и дает термодинамическую оценку этой системы. Он рассматривает осаждение кремнезема из раствора и определяет влияние различных физикохимических факторов на указанные процессы. Большое внимание уделяется механизму полимеризации простейших растворимых форм кремнезема с последующим образованием золей и гелей. [c.6]

    Анализ методов, применяемых на практике для очистки воды, показывает, что они определяются фазово-дисперсным состоянием примесей. Индивидуальная химическая природа веществ, загрязняющих воду, имеет значение лишь в той степени, в какой она допускает изменение этого состояния под влиянием различных факторов. Основываясь на этом, все примеси воды были разделены на четыре группы, две из которых образуют с водой гетерогенные системы, две — гомогенные, т. е. истинные растворы. Гетерогенные системы образуются при загрязнении воды нерастворимыми или малорастворимыми соединениями, гомогенные — при попадании в воду различных растворимых веществ. [c.21]

    При абсорбционной очистке газов концентрации улавливаемых примесей обычно невелики, что позволяет рассматривать систему как слабоконцентрированную. Концентрации, соответствующие равновесию фаз, те равновесные концентрации в газовой и конденсированной фазах, для таких систем достаточно точно определяются законами Рауля и Генри (1.62, 1 63) В качестве абсорбентов для очистки выбросов на практике используют только капельные жидкости Выбор абсорбента зависит от ряда факторов, главным среди них является способность поглощать загрязнитель из газовой фазы Так, воду можно достаточно эффективно использовать для обработки газов, содержащих хорошо растворимые загрязнители, такие как НС1, HF, NH , но она менее пригодна как абсорбент для улавливания слаборастворимых H,S, С , SO,. В последнем случае более приемлема хемосорбция, например, раствором щелочи или суспензией извести. [c.327]

    Соглаоно Хюттигу я Маркусу , превращение у-глинозема в корунд главным образом объясняется активным состояним глинозема. Это превращение зависит от каталитического влияния посторонных веществ, например газов. Сухой хлористый водород служит особенно эффективным минерализатором очевидно, он ослабляет кристаллическую структуру у-глинозема. Эти факторы определяют растворимость глинозема из прокаленных каолинов в кислотах и его способность реагаровать с расплавленным бисульфатом калия. Минерализаторы, подобные хлористому и бромистому водороду, воде, серному ангидриду и т. д., сильно действуют на растворимость вследствие их большой химической активности по отношению к глинозему, что имеет существенное значение для образования устойчивых соединений при более низких температурах. Аналогичные закономерности установлены и для двуокиси титана этот вывод имеет некоторое практическое значение для производства керамики на основе двуокиси титана (см. О. П, 106). [c.730]

    Чтобы понять поведение ионов металлов в растворах, нужно знать природу и устойчивость комплексов, которые могут образовать эти ионы с растворителем и с возможными лигандами, содержащимися в растворе. Исследования в этой области приводят к получению данных, необходимых для более глубокого понимания факторов, обусловливающих устойчивость комплексов. Найдено много важных практических применений этих сведений. Так, при качественном анализе некоторые осадки растворяют добавлением к ним соответствующего комплексующего агента. Применение тиосульфата ЫагЗгОз для фиксирования в фотопроцессе эффективно потому, что галогепид серебра, входящий в состав эмульсии пленки, растворяется за счет образования устойчивого и растворимого в воде комплекса [Ай(520з)2] . Добавление комплексующих агентов к жесткой воде приводит к образованию устойчивых и растворимых комплексов тех ионов металлов, которые определяют жесткость воды (например, комплекса кальция), чем предотвращается образование нерастворимых солей металлов с обычным мылом. [c.128]

    Растворители типа С—О образуют внешнюю сольватную сферу вокруг внутренней гидратной сферы, так каж они недостаточно силыно основны в льюисовском смысле, чтобы вытеснить молекулы воды из оординационных положений у центрального атома, в этом случае в органическую фазу переносится большее количество воды. В гомологическом ряду основность растворителя убывает с ростом молекулярной массы, причем одновременно уменьшается взаимная растворимость воды и растворителя. Способность к координации зависит также от стерических эффектов, вследствие чего наблюдается такой ряд для различных типов активных растворителей спирты> кетоны>простые эфиры>слож-. ные эфиры. Взаимное положение простых эфиров и кетонов в этом ряду определяется тем, что атом кислорода в кетонах менее экранирован алкильными группами, чем в простых эфирах в других отношениях простые эфиры являются более сильными льюисовы-ми основаниями. Способность молекул растворителя к координации зависит также от других структурных факторов например, было найдено, что несимметричные кетоны (7у1Р1БК и т. д.) являются достаточно хорошими активными растворителями. [c.212]

    Вообще говоря, в морской воде в качестве окислителя могут выступать ионы НзО или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхноети металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18). [c.43]

    Для определения концентрации этилового спирта в спиртовых растворах лекарственных препаратов, приготовленных на 70 %-ном спирте, разбавление проводят обычно 1 2, а приготовленных на 95 %-ном спирте — 1 3. Исключение составляют растворы салициловой кислоты, приготовленные на 70 % -ном спирте, которые разводят 2 1 вследствие ограниченной растворимости салициловой кислоты в воде. При этом необходимо учитывать, что при смешивании спирта с водой объем раствора несколько уменьшается, в связи с чем следует вносить поправку к фактору разведения при смешивании 2 мл спирта с 1 мл воды — умножают на коэффициент 1,47 (вместо 1,5) при смешивании 1 мл спирта с 2 мл воды — на 2,98 (вместо 3) при смешивании 1 мл спирта с 3 мл воды — на 3,93 (вместо 4). После соответствующего разведения определяют показатель преломления полученного раствора, вычитают величину показателя преломления, приходящуюся на содержание растворенного препарата (или препаратов) в разбавленном растворе. Если необходимо, вносят поправку на температуру и находят концентрацию спирта в приготовленном растворе. Для устгшовления крепости спирта в лекарственной форме найденное значение концентрации умножают на коэффициент разведения. [c.243]

    При попытке авторов определить растворимость основных хроматных комплексов было обнаружено, что комплексы не растроряютоя 1в воде, как щелое, и что вода является фактором, вызывающим из1менен.ие ж состава. [c.174]

    Мерой срока службы кислоты на установках алкилирования является количество разбав1ителей (углеводородов, растворенных в кислоте, и воды), образующихся на единицу объема чистого олефинового сырья. Этот фактор наряду с потерями кислоты (например, на окисление) и концентрацией свежей и отработанной кислоты определяет скорость замены свежей кислоты, что является прямой мерой стоимости регенерации катализатора на любой отдельно взятой установке алкилирования. Для расчета скорости замены кислоты было необходимо сформулировать модель ее истощения для системы реактор- -отстойник на пилотной установке. Эта модель исходит пз допущения, что система реактор+отстойник представляет собой единое целое,, и учитывает образование растворимых углеводородов и окисление Н2304. Модель была использована для расчета параметров разбавления и окисления на основе данных по составу кислоты, по ее потерям (на отбор проб) и по количеству катализатора, оставшегося после опытов в системе. [c.186]

    Являясь неполярными, углеводородные жидкости слабо растворяются в воде. Возможность растворения в воде углеводородов, как и других неполярных веществ, определяется числом льдоподобных структур. Чем больше этих структур, тем больше полостей, куда могут внедриться неполярные молекулы, и тем больпзе величина их растворимости. Эти факторы редко учитывают, например, при бурении в интервалах многолетнемерзлых пород, когда при повышении температуры водородные связи молекул замерзшей воды разрываются, уменьшая число льдоподобных образований, и изменяют адгезионные характеристики углеводородных пленок. Больнюе значение при этом имеет соотношение размеров молекул углеводородных жидкостей и пустот в льдоподобных структурах, наличие в воде органических и неорганических веществ, стабилизирующих ее структуру и приводящих к возникновению в системе процессов высаливания и всаливания неполярных молекул. Эти явления, кажущиеся несущественными на первый взгляд, оказывают большое влияние на процессы, происходящие на различных поверхностях раздела в промывочных жидкостях. [c.28]

    Растворимость в воде и совместимость ацеталей I и II с пластовыми водами. Одним из немаловажных факторов, определяющих условия приготовления различных растворов для закачки в пласт, является растворимость и совместимость химических реагентов в различных типах вод. Растворимость ацеталей I и II в дистиллированной воде и моделях пластовых вод (табл. 27-29) определяли при атмосферном давлении и температуре 24° С. [c.169]

    По растворимости экстрактивные вещества можно разделить на липофильные и гидрофильные. Лиофильные материалы хорощо смачиваются данной жидкостью и могут в ней растворяться. Лиофиль-ность по отношению к воде называют гидрофильностью, по отношению к маслам (растительные масла, углеводороды) - липофильностью. Лиофоб-ные материалы не смачиваются и, тем более, не растворяются в данной жидкости. Вода - высокополярный растворитель, следовательно, и гидрофильные вещества должны быть полярными. Некоторые из них хорошо растворяются в полярных органических растворителях. Липофильные вещества - неполярные или слабополярные, поэтому они гидрофобны. Характер поведения гидрофильных и липофильных компонентов экстрактивных веществ при переработке древесины в водной среде существенно различается. Первые переходят в воду с образованием растворов, вторые могут перейти в воду при повышенных температурах с образованием термодинамически неустойчивых дисперсных систем, стабильность которых будет определяться различными факторами. [c.499]

    ЛДбо. Причем при многократном введении фосфамида в желудок и поступлении его через дыхательные пути это различие не было отмечено. Т. Н. Паньшина (1964) считает, что фосфамид при повторном введении в желудок менее кумулятивен, чем метилмеркаптофос. По-видимому, в данном случае отмечается зависимость кумулятивных свойств от пути поступления веществ в организм. При аппликации на кожу малых эффективно равных доз фосфамида и метилмеркаптофоса более выраженные кумулятивные свойства отмечались у фосфамида. Это, вероятно, можно объяснить значительно большей растворимостью его в воде. Роль этого фактора известна — после того, как вещество проникло через кожу, оно должно резорбироваться в кровь. Н. В. Лазарев (1938) подчеркивал, что растворимость вещества в крови определяет максимальное его количество, которое может быть захвачено кровью в единицу времени при прохождении ее через участок кожи, соприкасающийся с данным веществом. Исходя из этого, можно по- [c.128]

    Таким образом, задача заключается в том, чтобы, с одной стороны, определить оптимальную растворимость пигмента, а с другой— оптимальное соотношение между пигментной частью и пленкообразующим. В связи с этим нами изучалась растворимость различных хроматных пигментов в воде и их пассивирующие свойства по отношению к различным металлам. Пассивирующие свойства хроматных пигментов должены зависеть от концентрации шестивалентного хрома и концентрации водородных ионов, поскольку от этих факторов зависит величина окислительно-восстановительного потенциала системы [20], [c.130]

    Растворимость. большинства твердых веществ в воде увеличивается с повьштением температуры, хотя имеется несколько важных исключений из этого правила. Изменение растворимости с температурой обусловлено влиянием кинетической энергии молекул растворенного вещества и растворителя, а кроме того, определяется устойчивостью сольватированных частиц и энергией кристаллической решетки. Результат одновременного действия всех перечисленных факторов можно предсказать, зная теплоту растворения если процесс растворения вещества происходит эндотермически, то при повьш1ении температуры его растворимость должна возрастать. [c.214]

    В то же время оставшиеся еще эфирные группы препятствуют сближению цепей целлюлозы на столь близкое расстояние, когда возникают прочные водородные связи между гидроксильными группами соседних целлюлозных цепей. Эти оставшиеся эфирные группы должны быть распределены статистически равномерно вдоль макромолекулы. При удалении большого числа этих групп возникают прочные водородные связи между гидроксилами на отдельных участках длинных цепных молекул, играющих роль поперечных свяэей, препятствующих растворению. Таким обраяом, растворимость в воде ацетилцеллюлозы определяется как физическими факторами (аморфной структурой, равномерным распределением функциональных групп), так и химическими — сольватацией, как гидроксильных, так и эфирных групп. [c.165]


Смотреть страницы где упоминается термин Факторы, определяющие растворимость в воде: [c.25]    [c.142]    [c.44]    [c.23]    [c.211]    [c.174]    [c.419]    [c.73]    [c.193]    [c.324]    [c.159]    [c.27]    [c.43]   
Смотреть главы в:

Органические аналитические реагенты -> Факторы, определяющие растворимость в воде




ПОИСК





Смотрите так же термины и статьи:

Растворимость в воде



© 2025 chem21.info Реклама на сайте