Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генная инженерия

    С каждым годом все большее число разнообразных процессов микробиологического синтеза реализуется в промышленных условиях, Промышленная биотехнология становится новым перспективным направлением, открывающим необозримые горизонты использования продуктов биосинтеза микроорганизмов в народном хозяйстве. Увеличивается число биохимических заводов и комбинатов по производству уже освоенной продукции микробиологического синтеза — ферментных препаратов, витаминов, кормовых антибиотиков, аминокислот, микробиологических препаратов для борьбы с вредителями растений, кормовых дрожжей и др. Широким фронтом ведутся исследования по получению и технологии производства новых биологически активных препаратов, разрабатываемых с использованием современных достижений молекулярной генетики и генной инженерии. К перспективным задачам промышленной биотехнологии относится также реализация микробиологических процессов, направленных на решение энергетической проблемы, в том числе производство биогаза, топливного этанола, метана, топливного водорода с помощью фотосинтезирующих микроорганизмов и др. [c.3]


    Расщепление нуклеиновых кислот под влклнием специфических ферментов — эндо- и экзонуклеаз — сопровождается разрывом фосфо-диэфирной связи и образованием продуктов различной величины, которые могут быть разделены методами электрофореза и хроматографии. Это широко используется при анализе последовательности нуклеотидов в молекулах РНК и ДНК., Особое значение при развитии генной инженерии получило расщепление ДНК специфическими эндонуклеазами (рестриктазами), позволяющее получать отрезки ДНК определенной длины и нуклеотидного состава. > [c.175]

    Биотехнология. Заметный прогресс в понимании основных принципов, определяющих структуру биомолекул (ДНК, белков) и их функционирование в биологических системах, был достигнут молекулярными биологами и биохимиками. Сейчас создается промышленность, использующая новые биотехнологии, являющиеся результатом успехов генной инженерии - способности контролировать на клеточном уровне химические процессы в организмах. [c.540]

    Генная инженерия — технология манипуляций с веществом наследственности ДНК — один из видов биотехнологии, дающий новые возможности, в частности в производстве энергии и новых материалов. [c.247]

    К этому направлению научно-технического прогресса следует относиться особенно осторожно. Существует мнение, что биотехнология может внести решающий вклад в решение глобальных проблем человечества. Однако даже с помощью обычной гибридизации — близкородственного скрещивания — получают, по сути, уродов, пусть и с полезными для цивилизации свойствами. С помощью же генной инженерии оказалось возможным создавать структуры ДНК, которых никогда не существовало в биосфере (в химии аналог — ксенобиотики) генная инженерия, таким образом, разрушает барьер, разрешающий генетический обмен только в пределах одного биологического вида или близкородственных видов, позволяет переносить гены из одного живого организма в любой другой. Этот факт открывает перспективы создания, в частности, микроорганизмов и растений с полезными для цивилизации свойствами и таит в себе колоссальную опасность этического и экологического характера. Наиболее известный случай здесь — синтез и использование гормонов роста в животноводстве, приведшие к так называемому коровьему бешенству . [c.248]

    Расширение посевов генетически модифицированных масличных культур ведется в США, Канаде, Мексике, Аргентине, Бразилии, Австралии [182]. Кроме совершенствования химического состава жиров, генная инженерия способствует созданию высокоурожайных сортов, устойчивых к воздействию вредителей и химических средств, применяемых в сельском хозяйстве. [c.249]

    В результате научно-технической революции появились новые отрасли промышленности. Особое значение имели освоение атомной энергии, развитие ракетостроения и космические исследования, создание полупроводниковой техники, получение новых материалов и композиций и т. д. Существенное значение приобрели вопросы контроля за загрязнением окружающей среды и другие экологические проблемы. Нельзя не отметить также успехов биохимии, раскрытия роли микроэлементов в процессах жизнедеятельности и достижения генной инженерии. [c.12]


    Будут более полно удовлетворяться потребности сельского хозяйства в продуктах микробиологического синтеза, а также активнее внедряться научно-технические достижения в области биотехнологии и генной инженерии. [c.10]

    Мутации, рак и генная инженерия [c.289]

    Получение. Небелковые Г., пептидные Г. небольшой мол. массы и активные фрагменты нек-рых полипептидных Г. синтезируют. Полипептидные и белковые Г. получают гл. обр. экстрагированием из желез убойного скота и послед. очисткой. Разработаны способы получения нек-рых пептидных Г. (напр., инсулина и соматотропина) с использованием генной инженерии. Метод основан на выделении гена соответствующего Г. и включении его в геном бактериальных клеток, приобретающих т. обр. способность к синтезу данного Г. В результате размножения образуются большие массы бактерий, активно синтезирующих Г. [c.598]

    В настоящее время И. получают из прир. источников или методами, генной инженерии. Человеческий лейкоцитарный И. используют для лечения острого лейкоза, волосатоклеточной лейкемии, а также для профилактики и лечения гриппа и др. вирусных респираторных заболеваний. [c.248]

    Следует отметить, что биотехнологические методы при решении проблем экологии и охраны окружающей среды применяются пока в существенно меньших масштабах, чем они того заслуживают. Однако непрерывное ужесточение требований к качеству природной среды, несомненно, должно способствовать тому, что экологическая биотехнология в недалеком будущем займет свое законное место в проектах и программах, целью которых являются защита окружающей среды от загрязнений, рекультивация земель сельскохозяйственного назначения, восстановление техногенно нарушенных природных ландшафтов и т,д При развитии этого направления необходимо исходить из использования пp фoдныx микробных штаммов, которые затем в той шш иной степени могут быть модифицированы методами генной инженерии. Биологическое разложение загрязняющих веществ целесообразно сочетать с другими физическими и химическими методами обработки. [c.190]

    Изменяется и ситуация с источниками сырья для производства полимерных материалов. В последние 40-50 лет развитие производства и переработки волокнообразующих полимерных материалов базируется на использовании продуктов глубокой переработки природного углеводородного сырья. Однако с учетом быстро прогрессирующего исчерпания мировых запасов нефти и газа все большее внимание вновь уделяется проблемам технического использования природных полимеров - различных полиуглеводов и фибриллярных белков, чему способствуют успехи генной инженерии и других направлений биотехнологии. [c.8]

    Вовлечение жиров в техносферу на современном этапе носит двойственный характер. Первое направление здесь — применение их как таковых в композициях масел, смазок и СОТС (возможно — в смешении с нефтяными или синтетическими маслами) второе — использование жиров на качественно ином уровне — с разработкой принципиально новых присалок и использованием технологических процессов для получения так называемых полусинтетических масел типа сложных эфиров или углеводородов. Весьма важной разновидностью второго направления является использование методов генной инженерии и биотехнологии, когда на стадии селекции масличных культур заранее программируется химический состав жиров с целью достижения варианта, оптимального для техносферы. [c.42]

    Таким образо.м, при повторном вовлечении жиров в техносферу предг1ринимаются попытки как бы примирить их экологические и технические свойства — в первую очередь повысить ан-тиокислительную и термическую стабильность, улучшить противокоррозионные свойства все это достигается либо за счет химической переработки жиров, либо путем ввода присадок, как правило, ухудшающих экологические свойства кроме того, для жиров необходим синтез и подбор принишшально иных антиокислителей по сравнению с нефтяными и синтетическими маслами, воздействие которых на человека и окружающую среду в большинстве случаев неизвестно экологические последствия от использования методов генной инженерии также далеко не ясны. [c.42]

    Речь идет о генной инженерии, когда изменение химсостава в желаемом для техносферы направлении осуществляется путем изменения наследственных признаков. Основная цель здесь — повысить содержание олеиновой и мононенасыщенных кислот и снизить содержание линоленовой, способствующей протеканию полимеризации, росту вязкости и ускоренному старению масла, а также экологоопасной эруковой кислоты. [c.247]

    И ча с М,, Биологический код, пер, с англ,, М., 1971. ГЕННАЯ ИНЖЕНЕРИЯ (генетич. инженерия), совокупность методов, позволяющих искусственно получать молекулы ДНК, содержащие генетич. информацию из двух или более источников любого биол. и (или) хим. происхожде-пия. Осп. этапы Г. и. I) фрагментация молекул ДНК из ра, л. источников (бактерий, вирусов, культуры клеток, ткапей, целых организмов), обычно с помощью рестрикта-зы, или искусств. х1[мико-ферментативный синтез фрагмента ДНК 2) расщепление с номогцью этого же фермента молекулы ДНК (вектора), способной автономно реплицироваться в клетке (обычно это плазмидная или вирусная ДНК) 3) соединение фрагментов ДНК с вектором в еди- [c.125]

    Ведущая роль в применении генно-инженерных растений принадлежит США [25]. В основе генной инженерии растений лежат методы культивирования клеток и тканей растений in vitro (в пробирке) и возможность регенерации целого растения из отдельных клеток. [c.248]

    По мнению ряда специалистов, биотехнология представляет собой по сути связующее звено между биологизацией и экологизацией материального производства, поскольку она по своей природе глубоко экологична [26]. Вряд ли можно полностью согласиться с этим утверждением. Негативные стороны генной инженерии подробно рассмотрены в главе 4. Кроме того, следует учесть, что экологические последствия от размножения микроорганизмов в большом количестве еще не оценены. Области применения каж- [c.390]


    ГЕННАЯ ИНЖЕНЕРИЯ — часть биотехнологии (см.) любые манипуляции с чистой ДНК с целью получения организмов с направлсшю измененной наследственностью (чаще всего — это бактерии, вырабатывающие или перерабатывающие нужные человеку вещества). [c.399]

    Рестриктазы II типа очень широко испатьзуются в методах генной инженерии для физического картирования ДНК и для выделения участков ДНК в составе того или иного рестрикционного фрагмента. Поэтому в течение ряда лет велся широкий поиск рестриктаз [c.130]

    М, б. имеет болыпое практич. значение как теоретич. основа южных разделов медицины (вирусологии, иммунологии, 0НКОЛО1ИИ и др.), с. х-ва (направленное и контролируемое изменение наследств, аппарата животных и растений для по. гучения высокопродуктивных пород и сортов) и совр. биотехнологии (генная инженерия, клеточная инженерия и т. п.). [c.347]

    Разумеется, без достаточных экспериментальных подтверждений мы не можем настаивать на таком объяснении, однако это и не так уже существенно. Важен надежно установленный экспериментальный факт для элюции нативной ДНК (или двунитевой РНК, а также гибридных молекул ДНК—РНК) с оксиапатита требуется почти вдвое более высокая концентрация фосфатного буфера, чем для элюции денатурированной ДНК или однонитевой РНК. Это обстоятельство открыло возможность быстрого и надежного отделения двунитевых молекул нуклеиновых кислот от однонитевых, что сыграло очень важную роль как в изучении структуры генома (исследования кинетики ренатурации), так и в развитии современных методов генной инженерии (гибридизация молекул НК и др.). Как и в случае кислых белков, присутствие даже относительно высоких концентраций неорганических солей в элюирующем буфере практически не сказывается на процессах элюции одно- и двунитевых молекул НК с оксиапатита. Вместе с тем, варьируя концентрацию Na l или КС1 в буфере, можно управлять изменением конформации самих нуклеиновых кислот, а также характером их гибридизации (например, отделять истинные , полноценные, гибридные молекулы от несовершенных гибридов ). [c.230]

    Как уже упоминалось, ПК в качестве лигандов могут обладать как групповой специфичностью (для белков хроматина, факторов управления трансляцией, нуклеаз и др.), так и индивидуальной (для индивидуальных мРНК, белков-регуляторов транскрипции и др.). Во втором случае на аффинном сорбенте должны быть закреплены вполне определенные участки генома. Это стало возмолшым после создания способов отбора и наработки в достаточных количествах строго идентичных фрагментов ДНК методами генной инженерии. В последнее время возникла еще одна область использования иммобилизованных НК — в качестве праймеров матричного синтеза. Эти приложения предъявляют разные требования к характеру фиксации НК на матрице. В первом случае расположение точек закрепления на молекуле НК может быть произвольным, во втором определенные и достаточно протяженные участки полинуклеотидной цепи должны быть свободны для комплементарного взаимодействия, а в третьем закрепление НК на матрице желательно осуществить лишь по одному определенному концу молекулы. Что же касается возможности реакций с активированными матрицами, то вдоль всей молекулы НК во множестве располагаются химически эквивалентные группы аминогруппы нуклеиновых оснований, гидроксилы сахаров и др. В особом положении находится только концевой остаток фосфорной кислоты или сахара. [c.387]

    Выбранный фрагмент ДНК (в данном случае из генома дрозофилы) встраивали в плазмиду, которую отбирали, размножали и очищали методами генной инженерии (1). Затем ее линеаризировали обработкой рестриктазой, не затрагивающей встроенный фрагмент (2). После этого с помощью ограниченного гидролиза экзо-нуклеазой III (30 мин при 0°) удаляли с З -концов каждой из нитей около 300 оснований (3). Обработанную таким образом ДНК сажали на активированную по методу Нойеса и Старка (см. выше) л-амино-бензилоксиметилцеллюлозу. Ковалентное присоединение происходило по однопитевым концам молекулы (через Се гуаниловых остатков). Так получали сорбент с экспонированными, заранее выбранными фрагментами двунитевой ДНК (4). [c.425]

    Активность неспецифичных Н. подавляется этилендиаминтетрауксусной к-той. Для нек-рых Н. обнаружены ингибиторы белковой природы. Локализация в клетках и функцион. роль Н. не изучены. Н. применяют в препаративной биохимии и генной инженерии Н. из бактерий Sarratia mar es ens используют для лечения вирусных заболеваний пчел. [c.296]

    Нарушения О.в. у микроорганизмов, вызванные изменениями в составе субстратов или полученные в результате мутагенеза, широко используют в практич. целях. Так, добавляя в питат. среду дрожжей сульфит натрия, удается переключить алкогольное брожение на глицериновое и создать на этой основе биотехнологию получения глицерина. В микробиол. промчгги широко используют полученные селекцией штаммы микроорганизмов-суперпродуценты отдельных аминокислот, антибиотиков и др. Методы генной инженерии позволяют избирательно изменять наследственный аппарат клеток и благодаря этому целенаправленно воздействовать на структуру и динамику О.в. у организмов. [c.318]

    Соединение высокопроизводит. твердофазного синтеза П. с разделяющими способностями препаративной ВЭЖХ обеспечивает выход на качественно новый уровень хим. синтеза П, что, в свою очередь, благотворно влияет на развитие разл. областей биохимии, мол. биологии, генной инженерии, биотехнологии, фармакологии и медицины. [c.471]

    За последние 20 лет X. т. претерпела колоссальные изменения в научном и прикладном отношении. В совр. условиях массовые продукты основной химии уступают место продуктам тонкого хим. синтеза, все чаще условия процессов и качество продуктов определяют св-ва поверхности раздела фаз, отдельных частиц, а не объема. От макроструктуры в-в переходят к управлению микроструктурой неструктурированная среда вытесняется структурированной (мицелла, кластер) энергию вводят направленно с помощью лазера с заданной частотой излучения, в ввде плазмы, электрич. поля вместо нормального состояния фаз используют суперкритич. флюиды, жвдкие кристаллы. Появились новые области X, т. биотехнологая, генная инженерия, конструирование материалов на мол. уровне (нанотехнология). [c.241]


Смотреть страницы где упоминается термин Генная инженерия: [c.445]    [c.360]    [c.405]    [c.132]    [c.288]    [c.389]    [c.14]    [c.49]    [c.478]    [c.148]    [c.223]    [c.347]    [c.462]    [c.165]    [c.172]    [c.176]    [c.362]    [c.259]    [c.556]   
Смотреть главы в:

Органическая химия -> Генная инженерия

Биология Том2 Изд3 -> Генная инженерия

Генетика Изд.3 -> Генная инженерия

Основы генетической инженерии -> Генная инженерия

Основы генетической инженерии -> Генная инженерия

Что если Ламарк не прав Иммуногенетика и эволюция -> Генная инженерия


Химический энциклопедический словарь (1983) -- [ c.125 ]

Принципы структурной организации белков (1982) -- [ c.228 ]

Общая органическая химия Т.10 (1986) -- [ c.213 ]

Органический синтез (2001) -- [ c.478 ]

Принципы структурной организации белков (1982) -- [ c.228 ]

Биоорганическая химия (1987) -- [ c.249 , c.251 , c.269 , c.298 , c.350 , c.426 , c.428 , c.725 ]

Органическая химия (2001) -- [ c.561 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.123 ]

Возможности химии сегодня и завтра (1992) -- [ c.43 , c.70 , c.117 , c.119 , c.121 ]

Общая микробиология (1987) -- [ c.19 ]

Экологическая биотехнология (1990) -- [ c.0 ]

Биохимический справочник (1979) -- [ c.44 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.326 ]

Биохимия человека Т.2 (1993) -- [ c.35 ]

Генетика человека Т.3 (1990) -- [ c.19 , c.61 , c.143 , c.163 ]

Биохимия человека Том 2 (1993) -- [ c.35 ]

Генетика с основами селекции (1989) -- [ c.221 , c.267 ]

Физиология растений Изд.3 (1988) -- [ c.408 , c.410 ]

Что если Ламарк не прав Иммуногенетика и эволюция (2002) -- [ c.188 ]

Молекулярная биология клетки Сборник задач (1994) -- [ c.40 , c.41 , c.42 , c.43 , c.44 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.326 ]

Биологическая химия (2004) -- [ c.171 , c.172 , c.174 , c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Азотфиксация и генная инженерия

Бактериофаг и генная инженерия

Генетическая генная инженерия

Генетическая генная инженерия актиномицеты

Генетическая генная инженерия бациллы

Генетическая генная инженерия дрожжи

Генетическая генная инженерия коринебактерии

Генетическая генная инженерия методология

Генетическая генная инженерия промышленно важных микроорганизмов

Генетическая генная инженерия псевдомонады

Генетическая генная инженерия схема типового опыта

Генная инженерия бактерий

Генная инженерия белков

Генная инженерия в природе и векторы для клонирования генов растений

Генная инженерия генов токсинов

Генная инженерия и анализ молекулярной природы заболеваний

Генная инженерия и биотехнология как важнейшие отрасли современной индустрии

Генная инженерия и галогенсодержащие ксенобиотики

Генная инженерия кластера генов нитрогеназы

Генная инженерия клонирование маркеров

Генная инженерия клонирование,

Генная инженерия конструирование

Генная инженерия метод специфических расщеплений

Генная инженерия на уровне зародышевых клеток

Генная инженерия перспективы

Генная инженерия промышленно важных микроорганизмов

Генная инженерия растений

Генная инженерия растений методология

Генная инженерия растений применение

Генная инженерия селекция

Генная инженерия совершила революцию в нейрохимии

Генная инженерия соединение фрагментов ДНК

Генная инженерия трансфекция и трансформация

Генная инженерия эукариотических объектов

Генная инженерия — Способы соединения фрагментов ДНК, используемые в генной инженерии

Генная инженерия. Биотехнология

Генная инженерия. Успехи и проблемы

Гормон роста человека, полученный методом генной инженерии

Другие направления генной инженерии растений

Другие ферменты, используемые в генной инженерии

Интерфероны человека, полученные методом генной инженерии

Использование бактерий, полученных с помощью методов генной инженерии

Использование генной инженерии для создания искусственных генетических систем

Клеточная н генная инженерия Сальников. Получение генетически маркированных клеточных штаммов

Клонирование в клетках животных — Генная инженерия растений

Метаболические пути биодеградации ксенобиотиков, созданные методами генной инженерии

Метод генной инженерии,

Микроинъекции в генной инженерии растений

Молекулярные аспекты биоинженерии. Генная инженерия

Мутации, рак и генная инженерия

Направленный мутагенез и генная инженерия белков

Нерешенные проблемы генной инженерии растений

Основные понятия генной инженерии

Отбор и генная инженерия III

ПРИНЦИПЫ ГЕННОЙ ИНЖЕНЕРИИ

Понятие о генной инженерии

Преимущества и риск — этические и социальные проблемы генной инженерии

Применение генной инженерии в сенсорной технологии

Проблемы и перспективы генной инженерии и биотехнологии

Рестриктазы значение для генной инженерии

Рост и генная инженерия III

Свойства генетического материала. Клеточная и генная инженерия

Сорта и генная инженерия

ТРАНСГЕННЫЕ УЖАСЫ, ИЛИ ЧТО ОНИ НИКОГДА НЕ РАССКАЖУТ О ГЕННОЙ ИНЖЕНЕРИИ

Трансформация и генная инженерия

Улучшение качества и повышение продуктивности растений методами генной инженерии

плазмиды генная инженерия

также Генная инженерия



© 2025 chem21.info Реклама на сайте