Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генная инженерия клонирование,

    Методами генной инженерии удается объединить в одном геноме антигены многих вирусов, например, гриппа и бешенства, герпеса и гепатита В. Клетки, зараженные одним вирусом, приобретают временный иммунитет к заражению другим вирусом - такое явление называется интерференцией. Это сложный процесс, определяемый многими факторами, в том числе и синтезом в клетке специального белка - интерферона. До сих пор интерфероны выделяли из крови животных или из донорской крови, что являлось сложным и дорогим методом. Генноинженерный способ получения интерферона (выделение его гена и клонирование в плазмидных векторах) позволил практически решить проблему достаточного обеспечения интерфероном больных гриппом даже во время эпидемий. [c.62]


    Генная инженерия помогла справиться и с некоторыми тяжелыми наследственными заболеваниями, например, с диабетом. Получен ген человеческого инсулина, который клонирован в кишечной палочке. Теперь вместо инсулина свиньи и крупного рогатого скота для лечения можно использовать инсулин человека. [c.62]

    Генная инженерия и клонирование, негативная евгеника и новейшие разработки в области криогеники, жизнь после смерти, удивительные способности человеческого разума, а также глобальных информационных сетей, полей, пространств и возможности т использования во благо себе и человечеству — основные темы книг, цель которых — сделать доступной для каждого серьезную науку. [c.192]

    Современное руководство по биотехнологии, написанное авторитетными канадскими учеными. В книге подробно изложены основы генной инженерии механизмы репликации, транскрипции и трансляции методы клонирования, амплификации и секвенирования ДНК конструирование рекомбинантных ДНК введение последовательностей-мишеней в геном микроорганизмов, растений и животных, а также практическое применение генной инженерии для получения лекарственных веществ, вакцин, факторов роста, инсектицидов и т.д. Большое внимание уделено генной терапии и связанным с ней морально-этическим проблемам, патентованию биотехнологических продуктов и способов их получения. [c.4]

    Молекулярная биотехнология как новая область исследований сформировалась в конце 1970-х гг. на стыке технологии рекомбинантных ДНК и традиционной промышленной микробиологии. Современное общество неплохо осведомлено о проблемах молекулярной биотехнологии. Так или иначе об этой науке знают практически все. Кто-то видел фильм Парк Юрского периода с его потрясающими, искусно нарисованными, но соверщенно несостоятельными с научной точки зрения клонированными динозаврами. Кто-то прочитал в газетах о том, что на рынке появились новые, биотехнологические помидоры с большим сроком хранения. А кто-то слышал рассуждения критически настроенного знатока о страшных последствиях генной инженерии, ожидающих нас в будущем. В этой книге мы попытаемся объяснить, что собой представляет эта научная дисциплина на самом деле, как проводятся биотехнологические исследования и как они могут повлиять на нашу жизнь. [c.9]

    Очень часто научные работники — неважно, о какой области науки идет речь, — в повседневном общении, на конференциях, в ходе переписки используют специфическую терминологию, проще говоря, жаргон. Мы старались обойтись без него и во многих случаях намеренно давали словесное описание явления или процесса там, где, прибегая к лаконичному жаргону, мы могли бы сэкономить немало слов. Для описания одного и того же явления в любой области исследований существуют синонимы. Так, термины технология рекомбинантных ДНК , клонирование генов и генная инженерия очень близки по смыслу. Когда в тексте впервые появлялся важный термин, мы давали в скобках его синоним или эквивалентное выражение. Освоить терминологию читателю поможет большой словарь терминов в конце книги. [c.10]


    Технология рекомбинантных ДНК (ее называют также молекулярным клонированием или генной Инженерией) — это совокупность экспериментальных процедур, позволяющая осуществлять перенос генетического материала (дезоксирибонуклеиновой кислоты, ДНК) из одного организма в другой. Никакого единого, универсального набора методик здесь не существует, но чаще всего эксперименты с рекомбинантной ДНК проводят по следующей схеме (рис. 4.1). [c.50]

    Революционные технологии, к которым относится и молекулярная биотехнология, редко встречают безоговорочную поддержку. Обеспокоенность общественности по поводу создания различных организмов методами генной инженерии имела серьезные последствия и привела к разработке строгих правил, регулирующих исследования в области рекомбинантных ДНК, и утверждению требований, которым должны удовлетворять биотехнологические продукты, поступающие на рынок. В этой главе мы рассмотрели различные аспекты регуляции исследований в области рекомбинантных ДНК, производства и потребления пищевых продуктов, полученных с помощью методов генной инженерии, высвобождения генетически модифицированных организмов в окружающую среду, экспериментов, связанных с генной терапией соматических клеток и клеток зародышевой линии, клонированием человека. [c.530]

    Эта глава книга Нейрохимия (а значит, и вся книга) была бы неполной, если бы я не описал кратко огромные возможности и некоторые первые успехи метода клонирования. Место,, оделяемое генной инженерии в книге, ни в коем случае не еле-дует соотносить с его значением для нейрохимии. Напротив, роль, которую молекулярная генетика, методы рекомбинантных ДНК и клонирования (молекулярного и клеточного) будут, по-видимому, играть в будущем, представляется мне очень важной. Для детального рассмотрения генной инженерии необходим был бы целый дополнительный том, поэтому здесь это сделано лишь в общих чертах. (Пока такого тома еще нет, я должен отослать читателя к публикациям по молекулярной биологии.) [c.369]

    Иногда понятия "генная инженерия" и "биотехнология" отождествляются (А А Баев, 1984), хотя несомненно генная инженерия представляет собой один из методов науки биотехнология В основу генноинженерных методов заложена способность ферментов — рестриктаз расщеплять ДНК на отдельные нуклеотидные последовательности, которые могут быть использованы для встраивания их в геномы бактериальных плазмид и фагов с целью получения гибридных, или химерных форм, состоящих из собственной ДНК и дополнительных встроенных фрагментов несвойственной им ДНК Поэтому методами генетической инженерии добиваются клонирования генов, когда выделяют нужный отрезок ДНК из какого-либо биообъекта и затем получают любое количество его, выращивая колонии генетически идентичных клеток, содержащих заданный участок ДНК Другими словами клонирование ДНК — это получение ее генетически идентичных копий [c.179]

    Для более углубленного изучения представленных здесь проблем можно рекомендовать учебные пособия по промышленной микробиологии или биотехнологии. Генная инженерия (техника молекулярного клонирования, разд. 15.3.6) открыла и в этой области новые возможности для биотехнологии. [c.347]

    Проблемы, возникающие при неконтролируемом внесении ГЕМОМ в окружающую среду, вызвали широкие дебаты в научном сообществе с привлечением правительственных структур и общественности. Периодически они возникают вновь после появления сообщений о каком-либо достижении генной инженерии или новых успехах в клонировании животных и человека. Значительное место в этих спорах отводится ответу на вопрос как долго ГЕМОМ и их ДНК будут существовать в окружающей природе и смогут ли модифицированные гены от ГЕМОМ быть переданы аборигенным микроорганизмам Первоначальные эксперименты показали, что ГЕМОМ быстро отмирают при внесении в природные ценозы, поскольку не способны конкурировать с существующими сообществами микроорганизмов. Предполагалось, что чужеродная ДНК, внесенная в ГЕМОМ, снижает конкурентоспособность живых клеток по сравнению с неизмененными клетками [c.262]

Рис. 25.1. Генная инженерия. Схема процедуры, разработанной для клонирования генов. Детали объясняются в тексте. Рис. 25.1. <a href="/info/77873">Генная инженерия</a>. Схема процедуры, разработанной для <a href="/info/32984">клонирования генов</a>. Детали объясняются в тексте.
    Этап поиска и клонирования генов (их выделение и сборка в одну конструкцию) уже отлажен. Гены, кодирующие белки, состоят, как правило, из трех основных участков промотора (определяющего экспрессию данного гена, с чего начинается транскрипция) кодирующей части (где содержится информация о структуре белка — продукта этого гена) и поли-А-области (цепочки адениновых нуклеотидов, ответственной за окончание транскрипции). В генной инженерии из частей разных генов получают рекомбинантные (химерные) гены. Например, кодирующий участок в таком гене может быть позаимствован у любого организма. Возможность свободно обращаться с генетическим материалом — основное преимущество молекулярной селекции перед традиционной, где перенос генов происходит лишь между близкородственными видами. Кроме того, используя подходящие промоторы, можно добиться, чтобы экспрессия гена происходила в нужных органах или тканях (корнях, клубнях, листьях, зернах) и в нужное время (скажем, при дневном освещении). [c.101]


    Клонирование — получение идентичных потомков (клонов) за счет введения ядер соматических клеток в оплодотворенную яйцеклетку с удаленным ядром способ получения популяций клеток или организмов с общим генотипом в генной инженерии — копирование гибридных ДНК. [c.189]

    Получение растений, устойчивых к гербицидам, методами генной инженерии прежде всего основывается на изучении молекулярных механизмов толерантности и включает следующие этапы выявление мишеней действия гербицидов в клетке растений, отбор растений/бактерий, устойчивых к данному гербициду (в качестве источника генов резистентности), идентификация и клонирование этих генов, изучение их экспрессии для использования в трансгенных конструкциях. [c.74]

    Вектор — самореплицирующаяся (автономная) молекула ДНК, используемая в генной инженерии для переноса генов и других последовательностей от организма-донора в организм-реципиент, а также для клонирования нуклеотидных последовательностей. [c.460]

    Все перечисленные этапы составляют сущность процесса клонирования, с помощью которого можно получить более миллиона копий любого фрагмента ДНК. Если клонированный фрагмент кодирует белок, то возможно экспериментально изучить молекулярный механизм регуляции транскрипции этого гена и наработать такой белок в нужном количестве. Внедрение подобных механизмов в многотоннажное производство с целью получения продуктов с набором полезных характеристик является одной из главных целей генной инженерии и биотехнологии вообще. Например, если ввести в генотип почвенных бактерий гены нитрифицирующих бактерий, то почвенные бактерии смогут переводить молекулярный азот воздуха в связанный азот почвы. [c.496]

    Существует мнение, что клонирование может привести к созданию людей-монстров. Здесь следует уточнить, что при клонировании ДНК копируется без искажений, в результате чего появляется еще один человек-близнец существующего индивида, и, следовательно, он не может быть монстром или уродом. В этом и проявляется принципиальное отличие клонирования человека и животных от методов генной инженерии. [c.500]

    Геном бактериофага X был превращен генными инженерами в наиболее удобный вектор для клонирования крупных фрагментов чужеродной ДНК. В геноме фага X есть два участка, не содержащие генов, необходимых для литического развития и производства потомства. Эти участки включают, соответственно, 22000 нуклеотидных пар в середине карты и 3000 между генами Р и Q (см. рис. 7.7). Таким образом, около [c.280]

    Развитие методов генной инженерии привело к разработке системы трансформации для дрожжей, что способствовало более глубокому изучению у них механизма рекомбинации. Гибридные плазмиды, содержащие участки дрожжевой ДНК с известными маркерами, клонированные на векторе Е. соИ, могут быть введены в клетки дрожжей. При этом может происходить встраивание плазмидной ДНК в хозяйскую хромосому за счет рекомбинации между гомологичными последовательностями хромосомы и участка дрожжевой ДНК, входящего в состав плазмиды. При использовании плазмидной ДНК в замкнутой кольцевой форме удается с заметной частотой отобрать трансформированные дрожжевые клетки. В то же время введение двухцепочечного разрыва в дрожжевую [c.150]

    Клонирование ДНК и генная инженерия [54] [c.326]

    Открытия, о которых шла речь в этой главе, были порождены стремлением ученых постичь жизнь клеток и основные механизмы наследственности. Однако в последние годы эти фундаментальные знания получили практическое применение. Методы клонирования ДНК и генная инженерия дают возможность выделять те или иные гены в достаточном количестве, перекраивать их по своему усмотрению и затем вновь вводить в какие-нибудь клетки и организмы. Эти методы составляют лишь часть того общего набора методов, который известен как технология рекомбинантных ДНК (о нем мы уже говорили в гл. 4). Ноявление технологии рекомбинантных ДНК вызвало подлинную революцию в науке о живых клетках. Кроме гого, оно открыло перед медициной и промышленностью новые ну ги к получению в достаточном количестве гех белков, которые раньше либо были недоступны вообще, либо могли быть получены лишь в очень малых количествах. [c.326]

    Изучение регуляции экспрессии генов гт имеет свою специфику, выражающуюся в том, что, как уже отмечалось, исследуемая проблема в основном решается применением методов генной инженерии — клонирования соответствующих генов. Учитывая тот факт, что таксономическая принадлежность реци-пиентных штаммов (в подавляющем большинстве случаев щтаммов Е. oli) и штаммов — источников донорной (клонируемой) ДНК зачастую отличается (см. разд. 5, часть II), экспрессия генов гш в таких случаях представляет вариант гетерологической экспрессии. Поэтому при интерпретации полученных результатов следует не упускать из виду, что формулируемые выводы относятся к регуляции экспрессии именно в новом для генов гт хозяине, а не к исходным клеткам (природном источнике клонированных генов). В связи с этим исследуемая проблема вынужденно во многом сводится к вопросам гетерологической, а учитывая специфику систем RM, и скоординированной экспрессии генов гт, что, понятно, не всегда отражает процессы происходящие в природном продуценте клонированных геиов. Эти замечания, очевидно, не относятся к переносу генов гт между штаммами одного вида. [c.104]

    Молекулярная биотехнология — это увлекательнейшая область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуш ествляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах. В ч. I мы познакомим читателя с концепциями молекулярной биотехнологии и теми микроорганизмами, которые в ней используются, с основами молекулярной биологии и методологией рекомбинантных ДНК. Будут описаны такие методы, как химический синтез генов, полимеразная цепная реакция (ПЦР), определение нуклеотидной последовательности (секвенирование) ДНК. Помимо успешного клонирования нужного гена очень важно обеспечить его правильное функционирование в организме нового хозяина, поэтому мы остановимся также на способах оптимизации работы клонированных генов в про- и эукариотических системах. И наконец, мы рассмотрим, как можно улучшить свойства конечных продуктов, модифицируя клонированные гены путем введения в них специфических нуклеотидных замен (мутагенез in vitro). В целом материал, изложенный в первой части, служит фундаментом, который позволяет понять различные аспекты конкретных применений молекулярной биотехнологии. [c.13]

    Чужеродный белок, синтезируемый в организме-хозяине, иногда оказывается менее активным, чем ожидалось, и чтобы повысить его активность, можно использовать методы генной инженерии. Например, при экспрессии в Е. соИ клонированной комплементарной ДНК (кДНК) р-интерферона человека (ИФР) белковый продукт обладал в 10 раз меньшей противовирусной активностью, чем нативная гликозилированная форма. При этом ИФр синтезировался в довольно большом количестве, однако почти все его молекулы образовывали димеры и более высокомолекулярные неактивные комплексы. [c.170]

    В 1980 г. Верховный суд США вынес определение, что изобретение, которое включает что-либо, созданное под солнцем руками человека , является охраноспособным. В 1988 г. было запатентовано первое животное, полученное с помощью методов генной инженерии, — трансгенная мышь. В ее ДНК бьш встроен ген, ответственный за образование злокачественных опухолей (онкоген), который находился под контролем промотора на основе длинного концевого повтора вируса опухоли молочных желез мыши (ЬТЯ ММТУ). Онкоген представлял собой ген туе вируса миелоцитоматоза цыпленка ОКЮ. Изобретение заключалось в клонировании химерного гена ЬТК ММТУ—т>>с в плазмиде, введении линеаризованной плазмидной ДНК в мужской пронуклеус оплодотворенных одноклеточных мышиных яйцеклеток, идентификации потомков, экспрессирующих ген туе, и получении линий трансгенных мышей. У животньгх одних линий ген туе экспрессировался в различных тканях, у животных других экспрессия ограничивалась одной или несколькими тканями. По утверждению Ледера [c.538]

    Основой для успешной разработки технологии промышленного применения ФГ гемицеллюлоз являются работы микробиологов, направленные на подбор наиболее продуктивных микроорганизмов, продуцирующих гемицеллюлазы. К ним относятся выделение сверхпродуктивных мутантов, создание микроорганизмов с желаемыми свойствами методами генной инженерии, в том числе используя клонирование [63]. Необходимо разработать способы иммобилизации и стабилизации гемицеллюлаз или целых микроорганизмов, продуцирующих необходимый набор ферментов [37, 63]. [c.242]

    Фермент используется в генной инженерии при клонировании фрагментов ДНК (см с. 433) и в анализе последовательности ДНК для введения метки по З -коицевым звеньям. [c.352]

    В связи с простотой строения оказалось легко выделять плазмиды из клеток, вставлять в них с помощью рестриказ и лигаз другие куски ДНК и снова переносить в клетки. Эта процедура получила название клонирования и позволила перейти к главной цели генной инженерии — получить в клетках одного вида белки на базе генов другого вида. Первым круп- [c.562]

    Ведущие капиталистические страны — крупнейщие потребители минеральных удобрений и пестицидов обеспеченность многих культур искусственным минеральным питанием здесь достигла оптимального уровня. Дальнейшая интенсификация химизации в земледелии сопровождается усилением негативных тенденций — таких, как истощение энргоресурсов (в энергоемком производстве минеральных удобрений), рост затрат на приобретение химических продуктов, загрязнение окружающей среды, опасность отравления биосферы ядохимикатами. Перспективы роста урожайности культурных растений в будущем связывают уже не с наращиванием химизации, а с внедрением в практику принципиально новых методов питания растений. В частности, большое внимание уделяют методам генной инженерии, позволяющим точной манипуляцией с генами растений (на клеточном, хромосомном или молекулярном уровне или путем клонирования) воздействовать на повышение потенциальных возможностей биологических объектов. [c.261]

    Создание разных типов траисгенных животных. Мечтой многих исследователей-селекционеров мира является разработка возможности не просто отбора животных с измененной хозяйственно-полезной изменчивостью, а преднамеренное изменение генотипа и направленное создание желаемого типа животных. Это оставалось мечтой до тех пор, пока не были сделаны выдающиеся открытия — выявление ДНК как носителя генетической информации, пока не были заложены основы рекомбинантной техники (открытие рестракционных энзим, клонирования ДНК и т. д.) или генной инженерии. В относительно короткие сроки были разработаны методы выделения из генома отдельных генов, создания эффективно функционируемых генных конструкций. В последующие годы были разработаны методы введения чужеродных генов в геном животных — реципиентов. Селекционеры получили в распоряжение могучий инструмент для создания животных с совершенно новыми свойствами. Что касается применения переноса генов у сельскохозяйственных животных, то надежды ученых в настоящее время связаны с улучшением продуктивности и качества животноводческой продукции, резистентности к болезням и создания так называемых генных форм или трансгенных животных-биореакторов ценных биологически активных веществ. [c.231]

    При клоиироваиш ДНК фрагмент, содержащий изучаемый ген, выявляют обычно с помощью радиоактивного ДНК-зонда или, после экспрессии гена в клетке-хозяине, - с помощью антител, обнаруживающих кодируемый этим геном белок. Затем клеткам, несущим данный фрагмент ДНК, предоставляют возможность размножаться и нарабатывать большое количество копий как самого гена, так и молекул его продукта. Для генноинженерных задач нуклеотидную последовательность такого клонированного фрагмента ДНК изменяют, присоединяют к другой последовательности ДНК, а затем снова вводят в клетки. Сочетание клонирования ДНК с генной инженерией вооружает клеточного биолога очень мощным инструментом исследования. В принципе возможно сконструировать ген, кодирующий белок с любой желательной аминокислотной последовательностью, и присоединить его к такой промоторной последовательности ДНК, которая позволит контролировать время и тип экспрессии гена Этот новый ген можно ввести либо в клетки, выращиваемые в культуре, либо в клетки зародышевого пути мыши или плодовой мушки. У трансгенных животных эффект экспрессии включенного гена можно наблюдать на многих различных клетках и тканях. [c.343]

    Повлиять на наследуемые признаки можно в принципе на всех уровнях действия гена. Теоретически, наиболее полным было бы воздействие на уровне генетического материала-ДНК. Впервые перенос ДНК неполовым путем с помошью бактериофага (или другими способами) был продемонстрирован для бактерий. В настояшее время такой перенос становится возможным для высших организмов, включая клетки человека. Методы генной инженерии привлекли внимание широкой общественности, однако без достаточных оснований акцент в публикациях делался на клонировании и создании искусственных людей. В результате многие были напуганы последствиями генетических исследований человека вообще. В действительности же генная терапия некоторых менделирующих заболеваний в будущем может стать очень эффективной. В таком случае она займет достойное место в ряду различных терапевтических средств. Эту тему мы более подробно обсудим дальше, в разделе 9.2, посвященном генетическому будущему человечества. [c.61]

    Все рассмотренные выше методы селекции продуцентов биологически активных веществ сегодня, в период интенсивного развития методов генной инженерии, называют традиционными методами. Эти методы в прошедшие 30 лет в огромной мере содействовали созданию микробиологической промышленности антибиотиков, аминокислот, ферментов, витаминов и других практически важных веществ. Исчерпали ли традиционные методы свои возможности Нам кажется, думать так преждевременно, как и надеяться на то, что генная инженерия в ближайшее время сможет быть применена для создания и улучшения обширного круга принадлежащих к разным таксономическим группам продуцентов, которыми располагает сейчас микробиологическая промышленность. Даже более реальная возможность использовать иа основе генноинженерных методов в качестве продуцентов микроорганизмы, для которых эти методы наиболее отработаны, например E sheri hia oli, едва ли удовлетворит промышленность числом продуктов микробного синтеза. В связи с этим очень важно для старых перспективных в промышленном отношении микроорганизмов, помимо совершенствования методов отбора нужного типа мутантов, развивать методы генетического обмена на основе слияния протопластов, трансдукции, трансформации хромосомной и плазмидной ДНК, которые расширяют возможности традиционных методов селекции. Вместе с тем у промышленных микроорганизмов все шире проводится поиск плазмид и предпринимаются попытки их использования в качестве векторов при переносе генетического материала, его клонировании и амплификации. Эти исследования важны для понимания генетического контроля сложных процессов синтеза, таких, иапример, как синтез антибиотиков, для выявления узких мест в биосинтезе многих других продуктов. Одновременно они приближают промышленные микроорганизмы к объектам генной инженерии. Методология генной инженерии постоянно совершенствуется и расширяет свои возможности. В таком успешном встречном развитии разных методов и их слиянии на все большем числе продуцентов можно представить себе ближайшее будущее селекции микроорганизмов, призванной обеспечить промышленность высокопродуктивными штаммами. [c.95]


Смотреть страницы где упоминается термин Генная инженерия клонирование,: [c.511]    [c.106]    [c.413]    [c.62]    [c.39]    [c.239]    [c.59]    [c.132]    [c.277]    [c.231]    [c.7]    [c.61]   
Биоорганическая химия (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Генная инженерия



© 2025 chem21.info Реклама на сайте