Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродный потенциал влияние комплексообразования

    Если правильно выбрать потенциал электрода при титровании, как указано в гл. V, то можно совершенно исключить влияние разряда взвеси осадка иодида ртути на платиновом электроде, электродные реакции других ионов и влияние комплексообразования избытка иодида с образовавшимся осадком иодида ртути [1-5]. [c.237]


    Подобные рассуждения применимы и к металлам, находящимся в контакте с растворами их ионов. Во всех случаях электродные потенциалы при комплексообразовании уменьшаются в направлении, которое можно предсказать количественно, исходя из величин констант устойчивости. Хорошо известными примерами являются влияние аммиака на электродный потенциал серебра и использование цианидных растворов при электроосаждении. Эти эффекты находят применение в аналитической химии нежелательные ионы металлов можно удалить электроосаждением, а концентрация свободных ионов определяемого вещества при помощи подходящего маскирующего агента снижается, если это необходимо, до уровня значительно ниже того, при котором происходит заметное его осаждение. И наоборот, электролизом можно выделить определяемые вещества, в то время как мешающие примеси маскируются в растворе. Так, медь при добавлении тартратов можно селективно высадить из растворов, содержащих также сурьму и висмут. Разница в устойчивости цианидных комплексов позволяет таким же образом отделять цинк от железа. [c.74]

    Влияние комплексообразования на величину электродного потенциала определяется известным уравнением [c.114]

    Практически мы имеем дело с растворами, содержащими не только ионы, участвующие непосредственно в окислительно-восстановительной реакции, но и другие ионы, ке участвующие в реакции, однако оказывающие влияние на величину окислительно-восстановительных потенциалов. В большинстве случаев такими ионами являются ионы ком-плексообразователей, способных вступать во взаимодействие с окисленной или восстановленной формой вещества. Так, например, нормальный окислительно-восстановительный потенциал системы Ре Ре " равен +0,77 б в присутствии цианид-ионов, в результате комплексообразования электродный процесс окисления — восстановления становится более сложным  [c.181]

    Реальные потенциалы. В реальных условиях в ряде случаев значения нормальных потенциалов не могут служить для сравнения поведения систем. Обычно анализируемые растворы содержат кроме ионов, участвующих в окислительновосстановительных реакциях, и ионы комплексообразователей, способных вступать во взаимодействие с окисленной или восстановленной формой вещества, оказывая влияние на величину окислительно-восстановительных потенциалов. Например, нормальный окислительно-восстановительный потенциал системы Fe +/Fe равен -j-0,77 В в присутствии цианид-ионов в результате комплексообразования электродный процесс окисления—восстановления осложняется Fe( N) " е Fe ( N)g и потенциал окислительно-восстановительной системы изменяется до - -0,36 Б. [c.429]

    Нивелировать влияние на результат анализа вариантности значения произведения растворимости осадка, образования комплексов с переменной стехиометрией и флуктуации крутизны электродной функции удается, применяя способ титрования до определенного значения потенциала [А.с. 1054779 СССР, МКИ G 01 N 27/46, 1983] [68, 69]. Положительный эффект достигается за счет того, что для расчета концентрации анализируемого иона используются результаты титрования, полученные в условиях значительного избытка титруемого иона, превосходящего равновесную концентрацию этого иона, вычисленную из значения произведения растворимости осадка или из значения константы комплексообразования образующегося при титровании соединения. При этом зависимость потенциала электрода от концентрации титруемого иона измеряется в оптимальном интерВ але, где флуктуация крутизны электродной функции минимальна. Высокие значения остаточной концентрации титруемого иона делают пренебрежимо малым вклад в его суммарную концентрацию растворимости осадка и образования комплексных соединений, стехиометрия которых отличается от стехиометрии основного продукта реакции титрования. Примером такого способа анализа может служить титрование фторидов щелочных металлов и аммония солью лантана до остаточной концентрации фторида, равной (4 -5) -10 Л1 [c.93]


    Можно ли делать подобные предсказания, основываясь на уравнении Нернста, для чего же необходимо снимать кривые ток — потенциал Дело в том, что реальная химическая система гораздо сложнее рассмотренных идеальных случаев. Данные о влиянии на стандартные потенциалы комплексообразования, pH, температуры, ионной силы и других факторов довольно скудны. Кроме того, невозможно предсказать, значения активационных сверхпотенциалов электродных реакций. Однако кривые ток — потенциал дают необходимую информацию о действительных условиях для корректного выбора электродного потенциала,, постоянство которого следует поддерживать при практическом разделении и определении методом кулонометрии с контролируемым потенциалом. [c.424]

    В связи с тем, что в одном и том же электролите потенциалы зубцов элементов специфичны для каждого элемента, методом амальгамной полярографии с наконлением можно определить качественный состав раствора. В различных лектролитах при прочих равных условиях потенциалы зубцов одного и того же элемента из-за комплексообразования и различной обратимости электродных процессов имеют различное значение. Применение в методе амальгамной полярографии с накоплением электролитов различного состава обусловлено необходимостью создания условий при нолярографировании для получения раздельных анодных зубцов определяемых элементов при их совместном присутствии в растворе. Теоретически [3] и экспериментально установлено, что в полярографии с линейно меняющимся потенциалом скорость изменения потенциала оказывает незначительное влияние на потенциал катодного и анодного зубцов. При измерении потенциала на электроде при помощи классического полярографа изменение потенциала практически не будет приводить к смещению потенциала зубца. Теоретические выводы [3] и большой экспериментальный материал показывают, что потенциал пика как для обратимых, так и для необратимых электродных процессов не зависит от концентрации восстанавливающегося или окисляющегося вещества. [c.153]

    Тот и Пунгор [76, 78] исследовали также влияние процесса комплексообразования на электроды с осадочными мембранами. Их исследования имели двоякую цель во-первых, установить характер электродной функции в растворах, содержащих комплексные соединения ионов, относительно которых селективен электрод, во-вторых, изучить поведение электродов в таких растворах, которые содержат ионы, растворяющие мембрану из-за образования комплекса (на этом основано использование AgX элeктpoдoв для определения N"). Растворение мембраны — возможная причина заниженного потенциала ЬаРз-мембранного электрода при измерениях в разбавленных фторидных растворах, содержащих цитраты [36, 79]. [c.26]

    Распространено мнение, что при использовании потенциалов для изучения равновесия химических реакций, особенно реакций комплексообразования, полярография заметно уступает потенциометрии. С этим мнением согласиться нельзя, так как каждый из этих методов имеет и преимущества, и недостатки. Действительно, точность измерения потенциалов в потенциометрическом методе выше, однако это преимущество не так велико, учитывая, что во многих случаях трудно полностью устранить искажающее влияние диффузионного скачка потенциала. Более существенно другое преимущество потенциометрического метода, свободного, как было показано недавно Бондом и Хефтером [1], в отличие от полярографии, от погрешностей, связанных со значительной адсорбцией реагирующих компонентов. Подробнее этот вопрос рассмотрен в гл. 2. В то же время, по сравнению с полярографией, потенциометрия имеет ряд недостатков. Во-первых, надежное потенциометрическое изучение равновеспя химических реакций возможно только при обратимом электродном процессе, в то время как в полярографии с этой целью успешно используются и необратимые процессы. Во-вторых, обратимость электродного процесса в потенциометрии, [c.14]


Смотреть страницы где упоминается термин Электродный потенциал влияние комплексообразования: [c.129]    [c.33]    [c.190]    [c.26]   
Основы аналитической химии Часть 2 (1979) -- [ c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние комплексообразования

Комплексообразование

Комплексообразованне

Потенциал электродный потенциал

Электродный потенциал



© 2024 chem21.info Реклама на сайте