Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточная мембрана растворение

    Термин мембранао используется вот уже более 100 лет для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клеткн н внешней средой, а с другой — полупроницаемой перегородкой, через которую могут проходить вода и некоторые из растворенных в ней веществ. В 1851 г. немецким физиолог X. фон Моль описал плазмолиз клеток растений, предположив, что клеточные стенки функционируют как мембраны. В 1855 г. ботаник К. фон Негели наблюдал различия в проникновении пигментов в поврежденные н неповрежденные растительные клетки и исследовал клеточную границу, которой он дал название плазматическая мембрана. Он предположил, что клеточная граница ответственна за осмотические свойства клеток. В 1877 г. немецкий ботаник В. Пфеффер опубликовал свой труд Исследование осмоса , где постулировал существование клеточных мембран, основываясь на сходстве между клетками и осмометрами, имевэщими искусственные полупроницаемые мембраны. В 80-х годах прошлого столетия датский ботаник X. де Фриз продолжил осмометрические исследования растительных клеток, предположив, что неповрежденный слой протоплазмы между плазмалеммой и тонопластом функционирует как мембрана. Его исследования послужили фундаментом при создании физико-химических теорий осмотического давления и электролитической диссоциации голландцем Я. Вант-Гоффом и шведским ученым С. Аррениусом. В 1890 г. немецкий физикохимик и философ В. Оствальд обратил внимание на возможную роль мембран в биоэлектрических процессах. Между 1895 и 1902 годами Э. Овертон измерил проницаемость клеточной мембраны для большого числа соединений и наглядно показал зависимость между растворимостью этих соединений в липидах и способностью их проникать через мембраны. Он предположил, что мембрана имеет липидную природу и содержит холестерин и другие липиды. Современные представления о строении мембран как подвижных липопротеиновых ансамблей были сформулированы в начале 70-х годов нашего столетня. [c.549]


    Явление осмоса играет важную роль в жизни растений и животных. Стенки растительных клеток живых организмов представляют собой полупроницаемые мембраны, через которые свободно проходят молекулы воды, но почти полностью задерживаются вещества, растворенные в клеточном соке. Поэтому осмос служит причиной тургора (состояние напряжения) и плазмолиза (сморщивание) клеток. С ним связаны процессы усвоения пищи и обмена веществ. Прибор, схема которого приведена на рис. 54, дает возможность измерять осмотическое давление. Он называется осмометром. На основании опытных данных измерения осмотического давления при различных концентрациях и температурах было установлено, что осмотическое давление раствора пропорционально концентрации растворенного вещества и абсолютной температуре раствора [см. уравнение (У.8)], [c.147]

    Следующей ступенью в эволюции жизни могло быть возникновение процесса синтеза белков, направляемого нуклеиновыми кислотами. До тех пор, однако, пока молекулы свободно переходили в окружающую водную среду, существовала лишь небольшая вероятность для развития процессов синтеза молекул различных видов. Только после того, как начали формироваться клетки (содержащие определенное количество воды с растворенными в ней различными веществами, которые удерживала от перехода в окружающую среду клеточная мембрана), процесс молекулярной эволюции вовлек в конце концов десятки тысяч веществ, участвующих в десятках тысяч каталитических реакций. [c.465]

    Все авторы подразумевают, что разделение фаз воды протекает, вероятно, на клеточном уровне. При этом могут существовать структурные элементы, в которых скорости релаксации значительно различаются, даже если транспорт воды чере мембрану происходит очень быстро. Это вызвано полупроницаемой природой клеточной мембраны по отношению к ионам в растворенным веществам, способным приводить к релаксации протонов воды. Фактически это свойство всей ткани использовано при разработке способа определения транспорта воды череэ мембраны эритроцитов методом ЯМР [11]. [c.184]

    Если ранее при проведении окислительно-восстановительных реакций в органической химии использовались молекулы растворенных веществ, являющиеся почти неконтролируемыми источниками или потребителями электронов, то теперь благодаря использованию ДЛЯ этой цели электролиза нри контролируемом потенциале появилась возможность проводить ряд направленных синтезов более рационально, чем старыми методами. Выяснена электрохимическая основа ряда важных биологических процессов в частности, это относится к поведению природных полиэлектролитов в клетках, клеточной мембраны и нейрона. Установлено также, что инициирование газового разряда, протекающего через ионизацию на границе металл — вакуум (газ), является по существу электрохимическим процессом и имеет много общего с электрохимической ионизацией на границе металл — раствор. [c.9]


    Чтобы познакомиться с превращением химической энергии АТФ в осмотическую работу клеточных мембран, рассмотрим активный транспорт через мембрану [3, 8, 14]. Клеточная мембрана непроницаема для боль-щинства полярных молекул. Для клеток характерно наличие специфических систем переноса, обеспечивающих проникновение некоторых типов веществ через мембрану. Перемещение веществ через мембрану с помощью специальных систем называют опосредованным переносом. Как правило, вещества транспортируются через мембрану по градиенту концентрации (т. е. в сторону более низкой концентрации), это — пассивный перенос (например, перенос глюкозы в эритроцитах). Наиболее важен для клетки перенос против градиента концентрации, т. е. в направлении более высокой концентрации (активный перенос). Рассмотрим некоторые термодинамические основы активного переноса, а именно, какое количество энергии обеспечивает перенос растворенных веществ против градиента концентрации. [c.431]

    Различают два вида диффузии веществ через клеточные мембраны — пасочную (без переносчика) и облегченную (с участием вещества- переносчика). При пассивной диффузии происходит произвольное движение веществ через поры (отверстия) в мембранах клеток или через липиды мембран. Через поры диффундируют многие продукты обмена (НдО, СО2, МНз и др ) также кислород. Поры имеются не только в плазматических мембранах клетки, но и в ядерных мембранах (рис. 28). Через эти поры внутрь ядра проходят белки, из которых образуются рибосомы, а также нуклеотиды, из которых синтезируются нуклеиновые кислоты. Из ядра в цитозоль клетки выходят рибосомы и отдельные виды нуклеиновых кислот. Жиры и жирорастворимые вещества, например витамины, проникают через клеточные мембраны благодаря их растворению в липидном слое этих мембран. При облегченной диффузии движение вещества через мембрану обеспечивается веществом-пере-носчиком. Переносчик либо вращается в мембране, либо образует канал только для определенного вещества, что создает возможность его диффузии по градиенту концентрации. Так транспортируются небольшие молекулы веществ, например ионы металлов и глюкоза, через клеточную мембрану в цитозоль. [c.75]

Рис. 24-22. Координированность переноса кислорода и СО2 эритроцитами. А. В легких в результате оксигенации гемоглобина происходит высвобождение ионов которые далее присоединяются к ионам НСО 3 с образованием Н2СО3. Под действием карбоангидразы Н2СО3 подвергается дегидратации, в результате чего образуется растворенная СО2, которая диффундирует в плазму крови, а из нее-в воздушное пространство легких и выдыхается. Б. Захват эритроцитами растворенной СО2 в периферических тканях требует участия карбоангидразы, катализирующей гидратирование СО 2 с образованием НзСОэ далее Н2СО3 теряет ион Н и превращается в НСО 3. Высвобождаемые при этом ионы И смещают равновесие реакции гемоглобина с кислородом в направлении отщепления кислорода и его передачи ткани. Поскольку О2 и СО2 растворимы в липидах, они легко проходят через клеточные мембраны, не нуждаясь в системах мембранного транспорта. Однако обмен между ионами СГ и НСО 3, осуществляемый через мембрану эритроцитов, протекает только при помощи систем, обеспечивающих транспорт анионов. Рис. 24-22. <a href="/info/1676512">Координированность переноса</a> кислорода и СО2 эритроцитами. А. В легких в результате <a href="/info/1388212">оксигенации гемоглобина</a> происходит высвобождение ионов которые далее присоединяются к ионам НСО 3 с образованием Н2СО3. Под <a href="/info/1038254">действием карбоангидразы</a> Н2СО3 подвергается дегидратации, в результате чего <a href="/info/888068">образуется растворенная</a> СО2, которая диффундирует в <a href="/info/91035">плазму крови</a>, а из нее-в воздушное пространство легких и выдыхается. Б. Захват эритроцитами растворенной СО2 в периферических тканях требует участия карбоангидразы, катализирующей гидратирование СО 2 с образованием НзСОэ далее Н2СО3 теряет ион Н и превращается в НСО 3. Высвобождаемые при этом ионы И <a href="/info/1754528">смещают равновесие реакции</a> гемоглобина с кислородом в <a href="/info/313626">направлении отщепления</a> кислорода и его <a href="/info/188180">передачи ткани</a>. Поскольку О2 и СО2 растворимы в липидах, они легко проходят <a href="/info/1413654">через клеточные мембраны</a>, не нуждаясь в <a href="/info/1405147">системах мембранного</a> транспорта. Однако <a href="/info/2599">обмен между ионами</a> СГ и НСО 3, осуществляемый <a href="/info/152902">через мембрану</a> эритроцитов, протекает только при помощи систем, обеспечивающих транспорт анионов.
    Клеточные мембраны, как и внутриклеточные мембранные структуры, являются полупроницаемыми. Максимальной проникающей способностью обладают вода и растворенные в ней газы, причем липидный слой практически непроницаем для ионов и большинства полярных молекул. [c.444]

    ДЛИНЫ дня и снижением температуры в осеннее время. Акклиматизация сопровождается многочисленными физиологическими изменениями. Нам пока еще не вполне ясно, какие именно из этих изменений ответственны за развитие холодостойкости всего вероятнее, что только определенное сочетание таких изменений придает растению способность выносить отрицательные температуры. Один из таких процессов можно сравнить с заменой воды на антифриз в радиаторе автомобиля. Антифриз используют, чтобы предотвратить образование льда, который мог бы разорвать радиатор. В растении, как и в автомобиле, есть вода, которая может замерзать и при этом в результате расширения разрывать клетки. В самом начале акклиматизации в клетках накапливаются различные растворенные вещества они снижают осмотический потенциал клеток и уменьшают вероятность их замерзания, поскольку точка замерзания клеточного сока в результате этого понижается.-При замерзании клеток главный вред наносят им образующиеся внутри кристаллы льда эти кристаллы растут, разрывают различные клеточные мембраны и, наконец, убивают клетку. Повышение концентрации растворенных веществ защищает растение, потому что оно уменьшает вероятность образования крупных кристаллов льда. При акклиматизации в клеточных мембранах также происходят некоторые изменения, делающие эти мембраны менее хрупкими при низких температурах. Возможно, это является результатом повышения степени ненасыщенности липидов мембран оно влечет за собой снижение их точки плавления, благодаря чему они при более низких температурах остаются полужидкими. [c.455]


    Стадия ОА называется стадией обезвоживания клеток. На стадии АВ концентрации проникающего через мембрану клетки вещества вне и внутри клеток медленно выравниваются за промежуток времени где у — поверхностно-объемное отношение клетки, а Кв — коэффициент проницаемости клеточной мембраны для растворенного вещества. Если растворенное вещество не проникает через мембрану клетки, то после стадии обезвоживания ОА клетка остается в обезвоженном состоянии [c.36]

    Отогрев замороженной суспензии также приводит к резкому уменьшению концентрации растворенных во внеклеточной среде веществ за счет таяния льда. Если все растворенные вещества проникают через клеточные мембраны значительно медленнее, [c.37]

    Полиэтиленгликоль представляет собой сильно гидрофильное вещество и способен связывать много свободной воды в растворе свободная вода — это молекулы, доступные для взаимодействия с заряженными молекулами (обычно ионами), растворенными в воде. Таким образом, при высоких концентрациях ПЭГ такие макромолекулы, как ДНК, больше не могут оставаться в растворе и осаждаются. Мембрана протопласта в норме отрицательно заряжена. Благодаря фосфатным группам ДНК тоже имеет отрицательный заряд, и, следовательно, взаимное отталкивание зарядов препятствует взаимодействию между ДНК и протопластами. При очень высоких концентрациях (30—40% вес на объем) ПЭГ также, по-видимому, минимизирует взаимное отталкивание зарядов таким образом, клеточные мембраны могут прийти в тесный контакт с возможным слиянием липидных бислоев и впоследствии после разведения со слиянием клеток. Было показано, что полиэтиленгликоль представляет собой и сильный стимулятор эндоцитоза у протопластов растений при добавлении ПЭГ они способны поглощать большие частицы, например целые хлоропласты, липосомы или [c.203]

    К первому типу относятся такие явления, как 1) чрезмерное осмотическое обезвоживание клеток, в результате которого уве-ллчивается концентрация внутриклеточных веществ, приводящая к высаливанию и необратимой денатурации растворимых белков или к повреждению мембранных структур из-за потери обеспечивающей их нормальное состояние доли воды 2) разрушение клетки за счет контакта с омывающей кристаллы льда средсгй., концентрация растворенных веществ в которой из-за превраще -ния части растворителя в лед непрерывно увеличивается вплоть до эвтектической области 3) резкое изменение кислотности иг ионной силы растворов вне и внутри клеток в процессе замораживания 4) повреждение клеточной мембраны вследствие до<-стижения клеткой минимального объема. [c.57]

    Однако применительно к живым биологическим объектам вряд ли можно говорить лишь о пассивной (простой) диффузии кислорода. На разных этапах транспорта кислорода в организме можно встретить многочисленные примеры облегченной диффузии. Следует отметить, что диффузионный перенос кислорода через биологические мембраны изучен хуже по сравнению с другими веществами. Тем не менее можно привести примеры диффузии растворенного кислорода через поры гистогематических мембран (мочевой пузырь жабы) и через каналы в клеточной мембране [564, 9]. Возможен перенос кислорода с плазмой через капиллярную стенку за счет гидростатического давления [369]. Хорошо известны роль межклеточной жидкости в транспорте растворенных в ней веществ к клеткам, а также движение гиалоплазмы, ускоряющей не менее чем на порядок поступление кислорода к удаленным от клеточной мембраны частям клетки с низким рОг сравнительно с простой диффузией. Такие потоки показаны не только для крупных растительных клеток [25, 184], но и для клеток млекопитающих [24, 521]. [c.15]

    Симпорт-не единственный тип насосов, осуществляющих транспорт сахаров. У некоторых бактерий накопление углеводов происходит путем сопряжения их входа в клетку с фосфорилированием. Папример, у многих бактерий поступающая в клетки глюкоза превращается в глюкозо-6-фосфат. Особенность транспорта этого типа, называемого транслокацией группы, состоит в том, что в ходе транспорта происходит модификация растворенного вещества. Клеточная мембрана непроницаема по отноше- [c.314]

    Перенос материала через мембрану эукариотической клетки эндоцитоз и экзоцитоз. Хотя растворенные вещества с небольшими молекулами могут проникать в эукариотическую клетку через ее поверхностную мембрану, проникновение более крупных молекул и частиц может происходить совершенно иным способом — путем переноса внутрь небольших капелек, заключенных в мешочек из плазматической мембраны, который затем отрывается от клеточной поверхности и превращается в вакуоль. [c.51]

    Клеточная стенка у бактерий не жесткая, как стальной панцирь, а тонкая и эластичная, как кожаная покрышка футбольного мяча. Подобно тому как мячу придает упругость надутая камера, клеточной стенке придает определенную упругость плотно прилегающий к ней изнутри протопласт. Внутреннее давление (тургор) обусловлено осмотическими факторами. Осмотическим барьером служит плазматическая мембрана она полупроницаема и контролирует проникновение в клетку и выход из нее растворенных веществ, В отличие от плазматической мембраны клеточная стенка проницаема для солей и других низкомолекулярных соединений. [c.50]

    Хотя липоиды находятся во всей массе клеточной протоплазмы, но особенно много их имеется в поверхностном полупроницаемом слое клетки. Через этот поверхностный слой могут проникать не только водорастворимые, но и жирорастворимые вещества. Всасывание этих последних соединений связано с возможностью растворения их в липоидах поверхностного слоя клеток. Особенно важная роль в процессах всасывания и обмена различными веществами между клеткой и окружающей жидкой средой принадлежит, по-видимому, холестерину и его эфирам. Фосфолипиды встречаются во всех биологических мембранах. Возможно, что именно эти морфологические структуры, в частности мембраны митохондрий, являются основными местами сосредоточения фосфолипидов в тканях. [c.110]

    В целях физического анализа процесса клеточного роста растительную клетку можно рассматривать как осмотическую ячейку, мембрана которой проницаема для воды, но непроницаема для осмотически активных веществ, растворенных в воде (фиг. 211). Эта мембрана в высокой степени эластична и почти или совсем пе оказывает сопротивления деформации. Мембрану окружает клеточная оболочка. Степень и скорость нормального увеличения размеров клетки [c.506]

    Введение флуоресцентной 5-диметиламинонафталин-1-сульфонильной группы в белки мембран и последующий анализ флуоресцентных спектров указывает [63] на высокую степень неподвижности информирующей группы и приводит к выводу, что клеточные мембраны не столь похожи на жидкость, как это ранее считалось. Растворение некоторых мембранных белков, достигаемое действием детергента, сопровождается возрастанием подвижности меченой группы (см. также главу 25.3). [c.442]

    Если в оба раствора опустить одинаковые каломельные элек-троды, то между ними возникнет разность потенциалов, отвечающая различной концентрации ионов хлора по обе стороны мембраны. Эта э.д.с. и будет мембранным потенциалом Е Мембранное равновесие имеет большое значение при изучении коллоидно-химических и биохимических явлений. Мембранный потенциал возникает там, где имеется полупроницаемая перегородка, омываемая с обеих сторон растворами электролитов. Такие системы встречаются в животных и растительных организмах. В технике мембранное равновесие приходится учитывать при извлечении из клеточного сока растворенных веществ с помощью диффузии, что имеет место, например, в сахарной промышленности. [c.422]

    Через мембраны живых организмов происходит непрерывный перенос как ионов, так и нейтральных веществ. Этот перенос может представлять собой обычную диффузию, диффузию с переносом или механическое перекачивание за счет энергии, запасенной в АТФ. Если соединить водные растворы по обе стороны клеточной мембраны микросолевыми мостиками, контактирующими с электродами сравнения, то можно обнаружить небольшую разность потенциалов, называемую мембранным потенциалом. Пренебрегая вкладом очень небольших потенциалов на жидкостных границах, а также потенциалов, которые могут возникать в неперемешиваемых слоях раствора, близко прилегающих к поверхностям мембран, рассмотрим главное интересующее нас явление, а именно потенциал, возникающий за счет различий в характере распределения ионов и за счет различий в активностях растворенных веществ. [c.313]

    Другой важный источник ошибок, общий для всех методов, основанных на обмене жидкости, появляется в тех случаях, когда клеточные мембраны достаточно проницаемы для вещества, находящегося в наружном растворе, так что вместо простого обмена воды приходится иметь дело с результирующим изменением объема. При этом наблюдается отток чистой воды и одновременно приток воды вместе с растворенными в ней веществами. В равновесном (или ква-зиравновесном) состоянии при нулевых изменениях объема объем (и вес) ткани оказывается в таких случаях больщим, чем в случае, когда поглощения растворенного вещества не происходит. Как и в рассмотренном выще примере, точка пересечения кривой с осью абсцисс (фиг. 42) смещается вдоль оси абсцисс, что приводит к занижению значения Т ткани по сравнению с действительной величиной. [c.170]

    Основная задача процесса измельчения сырья - максимальное разрушение клеточных структур с целью увеличения поверхности контакта экстрагента с перерабатываемым материалом. В данном случае сводятся к минимуму диффузионные процессы, связанные с переходом экстрактивных веществ через мембраны клеточных стенок в растворитель. Растворение извлекаемых веществ происходит тем быстрее и исчерпывающе, чем выше степень разрушенности клеточной ткани. Однако достичь таких результатов можно не любым, а определенным образом. Полнее разрушаются клеточные стенки при вальцевании с фрикцией, иногда с дополнительным дроблением на машинах ударного типа измельчения. Применение такого комбинированного способа позволяет получить материал более равномерно измельченный, с развитой поверхностью и [c.477]

    Клеточные мембраны, так же как и искусственные липидные бислои, способны пропускать воду и неполярные молекулы за счет простой физической диффузии. Олнако клеточные мембраны пропинаемы и для различных полярных молекул, таких, как сахара, аминокислоты, нуклеотиды и многие другие метаболиты, которые проходят через синтетические бислои чрезвычайно медленно. За перенос подобных растворенных веществ через клеточные мембраны ответственны специфические белки, называемые мембранными транспортными белками. Они обнаруживаются во всех типах биологических мембран и могут сильно отличаться друг от друга. Каждый конкретный белок предназначен для определенного класса молекул (например, неорганических ионов, Сахаров или аминокислот), а нередко лищь какой-то разновидности молекул из этих классов. Специфичность транспортных белков была впервые показана, когда обнаружилось, что мутации в олном-единственном гене приводят к исчезновению у бактерий способности гранспортировать определенные сахара через плазматическую мембрану. Аналогичные мутации теперь известны и у людей, страдающих различными наследственными болезнями, при которых нарушается транспорт тех или иных веществ в почках или кишечнике. Например, у индивидуумов с наследственной болезнью цистинурией отсутствует способность транспортировать определенные аминокислоты (включая цистин - связанный дисульфидной связью димер цистеина) из мочи или кишечника в кровь. В результате происходит накопление цистина в моче, что приводит к образованию цистиновых камней в почках. [c.381]

    Химическое и пространственное строение вешества определяет наличие у него биоактивности. Однако ее уровень (эффективность действия) может в значительной степени зависеть от разнообразных факторов. Большинство лекарственных вешеств должно обладать хорошей водорастворимостью, так как они переносятся в организме главным образом кровяным током, что благоприятствует созданию концентрации, достаточной для проявления фармакологического действия. Многие лекарственные вещества должны иметь хорошую липофильность и обладать способностью проникать через клеточные полупроницаемые мембраны, чтобы влиять на биохимические процессы метаболизма. Препараты, действующие на центральную нервную систему, должны свободно переходить из крови в спинномозговую жидкость и мозг, т.е. преодолевать гематоэнцефаличе-ский барьер, который защищает мозг от проникновения в него чужеродных веществ, растворенных в крови. Другим барьером для проникновения лекарственных вешеств из крови к тканям органа-мишени являются стенки капилляров. Для большинства лекарственных веществ не очень высокой молекулярной массы [c.18]

    Питание микроорганизмов осуществляется через поверхность их тела путем диффузии в результате разных концентраций веществ внутри и вне организма. Движение растворенных веществ лод действием осмотического давления происходит в сторону мень-щих концентраций, воды — в сторону больших. Так как поступающие в клетку вещества вовлекаются в биохимические процессы и усваиваются микроорганизмом, равновесия их внутри клетки и. вне ее практически не наступает. Однако проникновение вещества -В клетку не всегда объяснимо осмосом. Цитоплазматическая мембрана обладает избирательной способностью отличать нужные вещества от ненужных и извлекать их из растворов с малой концентрацией, не пропуская вредные для клетки вещества, содержащиеся в среде в значительных концентрациях (до определенных лределов). Так как поверхность клеток на единицу их массы лредставляет громадную величину, то процессы обмена и размножения микроорганизмов происходят с большими скоростями, и этим объясняются интенсивные биоповреждения некоторых материалов, на которых идут такие процессы. Давление в клетке создается поступившими в нее веществами, продуктами обмена и веществами клеточного синтеза. В связи с высоким осмотическим давлением внутри клетки создается постоянный приток в нее воды. Этим можно объяснить способность микроорганизмов развиваться на сравнительно сухих средах. Так, микрогрибы способны повреждать материалы, имеющие влажность 15...20 % и ниже. [c.15]

    Мембранология как самостоятельная наука, изучающая строение, свойства, механизмы функционирования биологических мембран, сформировалась сравнительно недавно (1950—1970 гг.). Однако сам термин мембрана используется вот уже почти 150 лет для обозначения клеточной фаницы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой — полупроницаемой перегородкой, через которую могут проходить вода и растворенные в ней вещества. Однако мембраны представляют собой не только статически организованные поверхности раздела. Быстрое развитие биохимии мембран и прежде всего широкое исследование мембранных белков и липидов обусловили прогресс в понимании структуры и функций биологических мембран. [c.301]

    У животных клетки в зонах интенсивного поглощения или транспорта обычно намного увеличивают площадь своей плазматической мембраны, образуя множество тонких отростхов, называемых микроворсинками (разд. 10,5.1). Жесткая оболочка не позволяет растительным клеткам использовать такой способ, поэтому онн вынуждены искать иные пути. Специализированные передаточные клетки увеличивают свою поверхность за счет внутренних выростов клеточной стенкн, выстланных плазматической мембраной (рис. 19-22). Эти клетки встречаются во многих местах, где происходит особенно интенсивный перенос веществ через плазматическую мембрану, напрнмер в жилках листа, где сахароза поступает в сосудистую сеть флоэмы (рис. 19-23), нли в местах активного переноса растворенных веществ из ксилемы в другие тканн. [c.177]


Смотреть страницы где упоминается термин Клеточная мембрана растворение: [c.250]    [c.498]    [c.211]    [c.46]    [c.96]    [c.181]    [c.187]    [c.54]    [c.54]    [c.308]    [c.56]    [c.58]    [c.67]    [c.168]    [c.18]    [c.308]    [c.31]    [c.91]   
Жизнь зеленого растения (1983) -- [ c.309 , c.313 , c.314 , c.436 ]




ПОИСК





Смотрите так же термины и статьи:

Мембрана клеточная

Растворение мембраны



© 2024 chem21.info Реклама на сайте